Для начала найдём все углы: <A - <B/2; <B = <C-30.
Объявим угол <A — как переменную "x", угол B объявим как: 2x, угол C объявим как: 2x+30.
<A = x
<B = 2x
<C = 2x+30
x+2x+2x+30 = 180°
5x+30 = 180°
5x = 150° ⇒ x = 150/5 = 30° ⇒ <A = 30°
<B = 30*2 = 60°
<C = <B+30 = 90°.
Как мы видим, наш треугольник ABC — прямоугольный, так как имеет один прямой угол(<C).
AB — гипотенуза, известный нам катет — BC.
Катет BC — лежит напротив угла A(30°).
Теорема 30-градусного угла в прямоугольном треугольнике такова: катет, протолежащий углу 30-и градусов в прямоугольном треугольнике — равен половине гипотенузы.
Тоесть: BC = AB/2; BC = 2 ⇒ AB = 2*2 = 4.
Вывод: AB = 4.
Параллелепипед прямой АВСДА1В1С1Д1, основание ромбАВСД, АВ=ВС=СД=АД, ВД=5, уголВ=120, уголД1ВД=45, ВД=биссектрисе углаВ, уголАВД=уголДВС=1/2уголВ=120/2=60, АВ=АД, треугольник АВД равнобедренный, уголАВД=уголАДВ=60, уголА=180-уголВ=180-120=60, треугольник АВД равносторонний, АВ=АД=ВД=5, треугольник Д1ВД прямоугольный, уголВД1Д=90-уголД1ВД=90-45=45, треугольник Д1ВД равнобедренный, ВД=ДД1=5, ДД1 -высота призмы, площадь боковой поверхности=периметрАВСД*ДД1=(5*4)*5=100, площадь оснований =2*(АВ в квадрате*sinA)=2*(5*5*корень3 /2)=25*корень3, площадь полная=площадь боковой+площадь оснований=100+25*корень3=25*(4+корень3), площадь диагонального сечения ВВ1Д1Д=ВД*ДД1=5*5=25
∠В=∠АДМ-∠ВАД
∠АДМ=90° т.к. опирается на диаметр, ∠ВАД<90°т.к. опирается на хорду
меньшую диметра⇒∠В-острый