ABCD-трапеция,О-точка пересечения диагоналей AC и BD,OM_|_BC,OM=5см и OK_|_AD,ОК=6см,ВС=50см <BCO=<DAO и <CBO=<ADO-накрест лежащие⇒ΔBCO∞ΔDAO по 2 равным углам⇒BC/OM=AD/OR⇒AD=20*6/5=24см Высота равна ОМ+ОК=6+5=11см ПЛОЩАДЬ равна (AD+BC)*MK/2=(20+24)*11/2=22*11=242cм²
По теореме о вписанном угле известно, что вписанный угол в 2 раза меньше центрального угла, опирающегося на ту же дугу, что и вписанный угол.Пусть угол АСВ = х град., тогда угол АОВ = 2х град. По условию задачи угол АОВ на 72 град. больше угла АСВ. Имеем уравнение:2х - х = 39х= 39угло АСВ = 39 град.Тогда центральный угол АОВ = 39*2 = 78 град.ответ: 78 градусовACB = yAOB = x(Т.к. центральный в 2 раза больше вписанного ( по теореме о вписанном и центральном угле опирающихся на одну дугу ))x = 2y=> 2y = y+39y= 39 x = 39*2 = 78
1. Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1. S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r. значит можно. 2. Не может. k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ . Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂. CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃. DB =BE ⇒k₂ =2k₁ ; EC =CF ⇒k₃ =2k₂ =4k₁ . AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁ ⇒ AB+BC< AC ,что невозможно.
Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂. DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.
<BCO=<DAO и <CBO=<ADO-накрест лежащие⇒ΔBCO∞ΔDAO по 2 равным углам⇒BC/OM=AD/OR⇒AD=20*6/5=24см
Высота равна ОМ+ОК=6+5=11см
ПЛОЩАДЬ равна (AD+BC)*MK/2=(20+24)*11/2=22*11=242cм²