Билет № 3 3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника. Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12 S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4 3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника. Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4. В соответствии со свойством касательных, проведенных из одной точки к окружности AM=AK CK=CN BM=BN P=3+3+4+4+3+3=20
Без рисунка. ( но будем считать что ABCD - основание пирамиды, а S-вершина пирамиды. Для начала найдём чему равна диагональ основания пирамиды по теореме Пифагора: AC = корень из ((6корней из двух в квадрате) + (6корней из двух в квадрате)) = корень из 144 = 12. Далее из вершины S провести надо высоту к плоскости ABCD. Обозначим высоту как SO. В правильной пирамиде высота будет лежать на пересечениях диагоналей основания пирамиды. Следовательно AО равна 1/2AC = 6. Потом найдём высоту по теореме Пифагора: SO=корень из (10 в квадрате) - (6 корней из двух) возвести вквадрат))=корню из 36= 6 Теперь можно найти объем. Объем пирамиды =1/3 S(основания) * H(высота)= 1/3*6корней из 2* 6корней из двух *6=144см^3...
я в этом не понимаю