Дана правильная четырехугольная пирамида SАВСД, длина бокового ребра которой равна L = 3 см, а стороны основания a = 2√3 см.
Проведём осевое сечение через 2 боковых ребра.
В сечении равнобедренный треугольник АSС с боковыми сторонами L = 3 см и основанием - диагональ квадрата основания d = a√2 = (2√3)*√3 = 2√6 см.
Высота Н пирамиды равна:
Н = √(L² - (d/2)²) = √(9 - 6) = √3 см.
Перпендикуляр из центра основания пирамиды на боковое ребро (пусть это ОК) - это высота треугольника ОSС, она равна (√3*√6)/3 = √2 см.
Искомый угол лежит в перпендикулярном сечении к боковому ребру.
В сечении - треугольник ВКД.
Апофема А = √(3² - (2√3/2)²) = √(9 - 6) = √3 см.
КД - высота, она равна 2S/L = (2*((1/2)*2√3*√6))/3 = 2√2 см.
То есть она как гипотенуза треугольника ОКД в 2 раза больше катета ОК, а угол КДО равен 30 градусов.
Отсюда искомый угол ВКД равен 2*60 = 120 градусов.
Прямой угол меньше тупого угла. Поэтому высота тупоугольного треугольника, проведенная из вершины острого угла, всегда расположена вне самого треугольника и пересекает не саму сторону, к которой проведена, а её продолжение. Об этом важно помнить.
В равнобедренном треугольнике АВС углы при основании АС равны по (180°- ∠АВС):2=(180°-112°):2=34°
АF- биссектриса. Поэтому ∠FAC=∠BAF= ∠ BAC:2=34°:2=17°
Из суммы углов треугольника
∠BFA=180°-∠BAF-∠ABF=180°-17°-112°=51°
Сумма острых углов прямоугольного треугольника 90° ⇒
∠НАF=90°-51°=39°
Объяснение:
ABCD-квадрат. Окружность проходит через точки А и В и касается точки К на противоположной стороне, причем будет выполняться равенство СК=DK=6см. Теперь через точку К проведем прямую, параллельную сторонам ВС и AD. Эта прямая пересечет сторону ВС в точке Е такой, что АЕ=ВЕ=6см. И эта прямая также пересечет окружность в точке М. МК-является диаметром нашей окружности, а формула длины окр-ти l=Пd.
Найдем ВК^2=BC^2+CK^2=144+36=180
Треугольник (МВК), одна сторона которого является диаметром окр-ти, а противолежащая вершина лежит на этой окр-ти, является прямоугольным, а эта вершина и будет вершиной прямого угла.
Пусть МЕ=х, тогда из треуг. МВК:
ВМ^2=(12+x)^2-180, а из треуг. МЕВ ВМ^2=36+x, приравняем, получим
(12+x)^2-180=36+x
144+x^2+24x-180=36-x^2
24x=72
x=3 см, МЕ=3см, d=КМ=12+3=15см
l=3,14*15=47,1см
Подробнее - на -