Стороны первого т-ка.:5мм; 500мм; 500мм.
Стороны второго т-ка:50мм; 50мм; 50мм.
Определим отношения соответственных сторон:5/50=1/10;
500/50=10;
500/50=10.
1/10≠10=10. в подобных т-х соответственные стороны пропорциональны,а в нас не пропорциональны .Значит т-ки неподобны.
ответ: не могут.
1) Если внешний угол при вершине В равен 111градусов, то внутренний как смежный угол равен 180-111=69 град. Т.к. треугольник равнобедренный, то углы В и А равны. Следовательно, если сумма всех углов треугольника равна 180градусов, угол при вершине С = 180 - (69+69) = 42 градуса.
2) аналогично. (180-20):2= 80, т.е. по 80 градусов угол В и угол А.
3) пусть х - коэффициент пропорциональности. тогда 2х+3х+7х=180. х=15 градусов. Меньший угол тогда 2 умножить на 15 = 30градусов
4) аналогично. х+2х+4х+8х=360. х=24 грудса, т.е. меньший угол.
5) сумма углов параллелограмма = 360градусов. т.к. диагональ разделяет угол при вершине параллелограмма на 2 части, то этот угол будет равен 61+47 = 108градусов.Другой угол параллелограмма будет равен = (360 - (2·108))÷2 = 73 градуса
6) пусть меньшее основание х, тогда большее равно х+16. По свойству средней линии трапеции: 2·18 = х + (х+16), отсюда х = 10. ответ: 10.
1) Назови треугольники, равенство которых позволит доказать равенство ΔAFD и ΔCFE: ΔBAE = Δ BCD.
По какому признаку доказывается это равенство
ПО-ВТОРОМУ
2. Величина угла, под которым перпендикуляр CD пересекает BA — 34
2)Отметь элементы, равенство которых в этих треугольниках позволяет применять выбранный признак:
Углы: CBD=ABE, EAB=DCB,
Стороны: BС=BA
По какому признаку доказывается равенство ΔAFD и ΔCFE - ВТОРОМУ
Отметь элементы, равенство которых в треугольниках ΔAFD и ΔCFE позволяет применять выбранный признак:
FAD=FCE, ADF=CEF, AD=EC
1)5 мм, 50 см ,50 см равнобедренный треугольник
2)5 см, 50 мм, 50 мм=5см, 5см, 5см равносторонний треугольник
стороны двух подобных треугольников могут иметь такую длину