Угол ОВА=90 градусов (радиус в точке касания перпендикулярен касательной). Секущая АО делит хорду ВС пополам в точке пересечения N и перпендикулярна ей (секущая из одной точки с касательными, проходящая через центр окружности к хорде, соединяющей точки касания). Итак, ВN - перпендикуляр из прямого угла на гипотенузу и равен согласно его свойству, √(ON*AN) =√2*6 =2√3. (NA=AO-NO). Тангенс угла ВОА равен отношению противолежащего катета к прилежащему = ВN/ON = 2√3/6 =√3/3 Значит угол ВОА = 30 градусов, а угол ВОС = 60 градусов. (так как АО - биссектриса углов ВАС и ВОС. Итак, угол ВОС= 60 градусов. Угол ВОС - это центральный угол, опирающийся на дугу ВС. Значит градусная мера этой дуги равна 60 градусам. ответ: градусная мера малой дуги ВС равна 60 градусов. (Если правильно понял условие задачи, что расстояние от центра до хорды равно 6см, а от центра до точки А равно 8см)
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.