сделаем построение по условию
точка G - середина отрезка CD
точки B1, D1,G образуют плоскость GB1D1
дополнительные построения
прямая (BD) параллельна (B1D1)
прямая (CF) параллельна (BD)
прямая (GK) параллельна (BD)
прямая (CB) -секущая для параллельных прямых (BD) ,(GK), (CF)
по теореме Фалеса, прямая (CB) отсекает пропорциональные отрезки DG=GC и CE=EB
по теореме Пифагора
GE^2 = GC^2+CE^2=(D1C1/2)^2+(B1C1/2)^2 =( (D1C1)^2+(B1C1)^2 )/4 = (B1D1)^2 / 4
GE = B1D1/2 - отрезки GE и B1D1 НЕ РАВНЫ
прямая (GK) параллельна (BD) , а значит и (B1D1) и проходит через точку G в плоскости GB1D1
следовательно прямая (GK) принадлежит плоскости GB1D1
точка E - пересечение (GK) и (CB)
точки Е и B1, а значит и отрезок EB1 принадлежат плоскости GB1D1
искомое сечение - четырехугольник GD1B1E ,
противоположные стороны B1D1 и EG параллельны и не равны.
Основной признак ТРАПЕЦИИ:
четырёхугольник является трапецией, если его параллельные стороны не равны.
ДОКАЗАНО
Высота проходящая через точку пересечения диагоналей будет осью симметрии. И делит указанные выше треугольники точно пополам
Получившиеся треугольники ОМС и ОМВ - тоже равнобедренные, тк у них один угол = половина ПРЯМОГО УГЛА (пересечение перпендикулярных диагоналей) , а второй угол =90 градусов (т. к. высота) . Поэтому на третий тоже остаётся половина 90 градусов. Т. е. углы при основаниях равны, след-но треугольник равнобедрен.
А это значит, что ВМ=МО. Но ВМ = половинка ВС, которая =12, т. е. ВМ=6=МО=6. Так?
Аналогично рассматривает треугольник АОД, который тоже равнобедрен, который тоже высота делит пополам на два равнобедренных, а значит NO=ND=NA=10
А высота всей трапеции = NO+OM=6+10 = 16.
А площадь = (ВС+АД) *MN/2