Вравнобедренной трапеции abcd диагональ ac является биссектрисой угла bad.найдите величину большого угла данной трапеции,если угол acd равен 87 градусов.
Поскольку АС - биссектриса, то угол ВАС = углу САD. ABCD - трапеция, следовательно BC параллельно AD, следовательно углы ВСА и CAD равны, т.к. являютс накрест-лежащими при секущей АС. В итоге угол ВАС = CAD = ВСА = x. т.к. ВАС = ВСА, то треугольник АВС - равнобедренный, сумма его углов = 180 + x + х, отсюда угол АВС = 180 - 2x. Угол BAD = 2х. Угол ВСD = 87 + x. Угол СDA = углу ВАD(т.к. трапеция равнобедренная) = 2x. Сумма всех углов трапеции равна 360 градусов. Составим уравнение, где приравняем сумму всех углов к 360. BAD + ABC + BCD + CDA = 360 2x + ( 180 - 2x) + (x+87) + 2x = 360 3x + 267 = 360 3x= 360-267=93 x=31 Большими углами данной трапеции является угол АВС и угол BCD, поэтому х можно подставить либо в формулу АВС = 180 - 2х либо в формулу BCD = 87 + x. И там и там ответ получится одинаковый. Подставим, например, в АВС: АВС = 180 - 2*х= 180 - 2*31= 180 - 62= 118 градусов. ОТВЕТ: 118 градусов.
В равнобедренном треугольнике высота на основание (она же и биссектриса и медиана угла против основания) равна: Н = √(а² - (в/2)²) = √(100 - 36) = √64 = 8. Точка пересечения биссектрис лежит на высоте Н на расстоянии ДО₂: ДО₂ = (в/2)*tg(A/2). tg(A/2) = √((1 - cos A) / (1+cos A)). cos A = (b/2) / c = (12/2) / 10 = 6 / 10 = 3 / 5. tg(A/2) = √((1-(3/5)( / (1+(3/5)) =√((2/5) / (8/5)) = √(1/4) = 1/2 Тогда ДО₂ = 6*(1/2) = 3. Медианы пересекаются в точке О₁, расстояние ДО₁ = (1/3) *Н = 8/3. Отсюда расстояние между точкой пересечения биссектрис и точкой пересечения медиан равно:3 - (8/3) = (9-8) / 3 = 1 / 3.
Второй острый угол треугольника - 180-90-60=30°; В прямоугольном треугольнике, против угла в 30° лежит катет равный половине гипотенузы. 20/2=10 см; второй катет находим по т. Пифагора - √(20²-10²)=√300=10√3; площадь прямоугольного треугольника - произведение длин катетов деленное на два; 10*10√3/2=50√3 ед².
Второй После того как нашли длину катета можно сразу найти площадь треугольника через две стороны и угол между ними. Одна сторона - 20 (гипотенуза), другая сторона - 10 (катет лежащий против угла 30°). Значит угол между катетом и гипотенузой - 60°; площадь треугольника равна произведению длин сторон умноженную на синус угла между ними деленное на два. Синус 60°=√3/2 - табличное значение. площадь - 10*20*√3/(2*2)=50√3 ед².
BAD + ABC + BCD + CDA = 360
2x + ( 180 - 2x) + (x+87) + 2x = 360
3x + 267 = 360
3x= 360-267=93
x=31
Большими углами данной трапеции является угол АВС и угол BCD, поэтому х можно подставить либо в формулу АВС = 180 - 2х либо в формулу BCD = 87 + x. И там и там ответ получится одинаковый.
Подставим, например, в АВС:
АВС = 180 - 2*х= 180 - 2*31= 180 - 62= 118 градусов.
ОТВЕТ: 118 градусов.