ема «Площади многоугольников» является неотъемлемой частью школьного курса математики, что вполне естественно. Ведь исторически само возникновение геометрии связано с потребностью сравнения земельных участков той или иной формы. Вместе с тем следует отметить, что образовательные возможности раскрытия этой темы в средней школе используются далеко не полностью.
Основная задача обучения математике в школе заключается в обеспечении прочного и сознательного овладения учащимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности каждому члену современного
Когда мы продолжили стороны до пересечения - мы получили большой треугольник, и маленький. Их площади отличаются на площадь трапеции. Так как основания трапеции параллельны, мы можем утверждать, что большой и маленький треугольники подобны (по трем углам). Известно, что у подобных треугольников площади относятся как квадрат коэффициента подобия (а коэффициент подобия нам дан, это 3/5). Площади относятся как 9 к 25 (так как (3/5)^2 = 9/25), а площадь большого треугольника равна 49. Значит у маленького площадь равна 25. У трапеции площадь равна разности двух этих площадей: 50 - 18 = 32
ема «Площади многоугольников» является неотъемлемой частью школьного курса математики, что вполне естественно. Ведь исторически само возникновение геометрии связано с потребностью сравнения земельных участков той или иной формы. Вместе с тем следует отметить, что образовательные возможности раскрытия этой темы в средней школе используются далеко не полностью.
Основная задача обучения математике в школе заключается в обеспечении прочного и сознательного овладения учащимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности каждому члену современного