1) ∠E--общий для треугольников ΔΕΒС и ΔЕАD. Также, поскольку основы трапеции АD и ΒС параллельны, то DС--секущая, поэтому углы
∠ΕСВ=∠ЕDА как соответсвенные.
АВ также секущая, поэтому и ∠ΕΒС=∠ЕАD как соответсвенные.
Таким образом, ΔΕΒС и ΔЕАD подобные по трём углам ΔΕΒС ~ ΔЕАD.
Значит, все их соответствующие стороны пропорциональны => АD/ΒС=АЕ/ВЕ
7/3=14/ВЕ
ВЕ=3*14/7=3*2=6 см
2) Это треугольники ΔMEK~ΔBAK~ΔBEA~ΔMAN (т.к. согласно свойствам секущей, их соответсвенные углы равны, и их три угла равны)
3) По свойствам прямоугольника, диагонали точкой пересечения делятся попалам и они равны => OD=OC=24/2=12 см
Поэтому ΔCOD-равнобедренный
<COD=<BOA как вертикальные
<COD+<АOD=180°, т.к. они смежные
Обозначим <COD=х, <АOD=х+60°
Тогда х+х+60°=180°
2х+60°=180°
2х=180°-60°
2х= 120° | : 2
х=60°
Т.к. ΔCOD-равнобедренный, то если угол при его вершине равен 60°, то и два его других угла будут равны 60°, а значит это равносторонний треугольник, поэтому все его стороны равны 12 см
PΔCOD=12*3=36 см
Решение.
Если радиус основания R = 15см, а осевое сечение равносторонний треугольник, то образующая конуса L и диаметр основания D равны.
L = D = 2R = 30см.
Длина хорды а окружности основания, являющаяся неизвестной стороной треугольного сечения, образованного двумя образующими, , угол между которыми равен 30° может быть найдена из теоремы косинусов.
а² = L² + L² - 2L²·cos30° = 2L²·(1 - cos30°)
а² = 2·30²·(1 - 0.5√3) = 1800·(1 - 0.5√3)
a = 30·√(2 - √3)
Высоту h треугольного сечения, проведунная к стороне а найдём по теореме Пифагора
h² = L² - (0.5a)²
h² = 900 - 450·(1 - 0.5√3) = 450·(1 + 0.5√3) = 225·(2 + √3)
h = 15√(2 + √3)
Площадь сечения
S = 0.5a·h = 0.5· 30·√(2 - √3)·15√(2 + √3) = 225·(4 - 3) = 225(cм²)
делится на 16 частей, надеюсь это правельно