Гипотенуза равна 50 см; второй катет равен 40 см.
Объяснение:
Проекция катета на гипотенузу - это перпендикуляр, опущенный из вершины прямого угла на гипотенузу.
Теорема:
Перпендикуляр, опущенный из вершины прямого угла на гипотенузу есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гипотенузу, а каждый катет есть средняя пропорциональная величина между гипотенузой и прилежащим к этому катету отрезком гипотенузы.
1) Обозначим гипотенузу с, тогда, согласно теореме:
с : 30 = 30 : 18
с = 30² : 18 = 900 : 18 = 50 см
2) По теореме Пифагора находим другой катет b:
b = √(50² - 30²) = √(2500 - 900) = √1600 = 40 см
ответ: гипотенуза равна 50 см, а второй катет равен 40 см.
1)В прямоугольном треугольнике ABC, угол А=90 градусов, АВ=20 см, высота АД=12 см.
Найти: АС и COS угла С.
ДВ"=АВ"-АД" = 400-144=256
ДВ=16
треугольники АВС и ДВА подобны по первому признаку подобия (два угла равны), следовательно ДВ/АВ=АВ/СВ
16/20=20/СВ
СВ=20*20:16=25
АС"=СВ"-АВ"=25"-20"=625-400=225
АС=15
мы нашли АС=15,
теперь ищем CosC
CosC=АС/СВ=15/25=3/5
CosC=3/5
ответ: CosC=3/5, АС=15см
2)
AD=AB cos A, S = AB AD sin A = AB² sin A cos A = 1/2 AB² sin(2A) = 72 sin(82°) = 72 cos(8°) ≈ 71,2993 см²