Стороны треугольника авс касаются шара.найти радиус шара,если ав=8 ,ас=12, вс=10 и расстояние от центра шара о до плоскости треугольника авс равно корень из 12.
Треугольники ABC, ACD и CBD подобны между собой . Это непосредственно следует из второго признака подобия (равенство углов в этих треугольниках очевидно).Прямоугольные треугольники - единственный вид треугольников, которые можно разрезать на два треугольника, подобных между собой и исходному треугольнику.Обозначения этих трех треугольников в таком порядке следования вершин: ABC, ACD, CBD. Тем самым мы одновременно показываем и соответствие вершин. (Вершине A треугольника ABC соответствует также вершина A треугольника ACD и вершина C треугольника CBD и т. д.)Треугольники ABC и CBD подобны. Значит:AD/DC = DC/BD, то естьDC2=AD*BDDC2=9*16DC=12 см
Ромб АВСД, АВ=ВС=СД=АД=8, радиус=2*корень3, проводим перпендикуляры в точки касания ОН на АД и ОМ на АВ, ОН в квадрате=АН*НД - (это уравнение получается из отношения сторон подобных треугольников, треугольник АОН подобен треугольнику НОД как прямоугольные по равным острым углам - угол АОН=90-1/углаА=90-30=60, уголНДО)=1/2 углаД=(180-60)/2=60, тогда АН/ОН=ОН/НД или ОН в квадрате=АН*НД), НД=х, АН=8-х, 12=(8-х)*х, х в квадрате-8х+12=0, х=(8+-корень(64-4*12))/2=8+-4/2, х1=2=НД, х2=6=АН, АН=АМ-как касательные проведенные из одной точки=6, треугольник АМН равнобедренный, но уголА=60, а уголАМН=уголАНМ=(180-60)/2=60, треугольник равносторониий, МН=АН=АМ=6
Пусть расстояние до плоскости тр-ка равно d=кор12, радиус вписанной в тр. АВС окр-ти (сечения сферы пл-тью АВС) равен r. Тогда радиус шара:
R = кор(d^2 + r^2). Найдем r.
Воспользуемся двумя формулами для площади тр-ка:
S = p*r и S = кор[p(p-a)(p-b)(p-c)], где р=(a+b+c)/2 - полупериметр.
р = (8+10+12)/2 = 15
Тогда площадь по формуле Герона:
S = кор(15(15-8)(15-10)(15-12)) = кор(15*7*5*3)= 15кор7
Тогда: 15кор7 = 15*r
Отсюда r = кор7
Тогда радиус шара:
R = кор(12 + 7) = кор19.
ответ: корень из 19