А) нет, т. к. если одна из параллельных прямых пересекает плоскость, то и вторая прямая пересечёт эту плоскость.
б) могут.
Пусть в плоскости ą лежит прямая с||а, b пересекает плоскость ą в точке, принадлежащей прямой с. Тогда, если прямая пересекает одну из двух параллельных прямых, то она пересечёт и вторую.
в) могут. Т. к. а||плоскости альфа, то существует плоскость ß, в которой лежит а. если одна из 2 прямых лежит в некоторой плоскости (в данном случае прямая а), а другая прямая (прямая b) пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.
Подробное решение. Параллелограмм - четырехугольник с попарно параллельными и равными сторонами. По условию АК=АВ=3 см. ⇒АВ=АК+КВ=3+3=6 см СD=АВ=6 см Диагонали параллелограмма точкой пересечения делятся пополам. ⇒ ВО=ОD, а КО - средняя линия треугольника АВD, т.к. делит его боковые стороны пополам. КО, как средняя линия треугольника, параллельна его основанию АD, Т.к. диагональ параллелограмма делит его на два равных треугольника, средние линии в треугольниках АВС и ВСD равны. КО=ОМ ⇒ КМ=4+4=8 см КМ - параллельна и равна АD=ВС АD=ВС=8 см 1) Периметр АВСD=АВ+СD+ВС+АD=2*6+2*8=28 см 2) Сравните углы KOA и BCA. Углы КОА и ОАД накрестлежащие при пересечении двух параллельных прямых третьей ( секущей СА). Такие углы равны. Угол ВСА=углу САD на том же основании: это накрестлежащие углы, образованные пересечением параллельных прямых секущей АС. ⇒ Так как угол КОА=углу ОАD, а угол ОАD=углу ВСА, - угол КОА=углу ВСА. С другой стороны, можно рассмотреть эти углы как соответственные при пересечении параллельных ВС и КМ секущей АС. Соответственные углы при этом равны; равенство углов КОА и ВСА доказано дважды.
А) нет, т. к. если одна из параллельных прямых пересекает плоскость, то и вторая прямая пересечёт эту плоскость.
б) могут.
Пусть в плоскости ą лежит прямая с||а, b пересекает плоскость ą в точке, принадлежащей прямой с. Тогда, если прямая пересекает одну из двух параллельных прямых, то она пересечёт и вторую.
в) могут. Т. к. а||плоскости альфа, то существует плоскость ß, в которой лежит а. если одна из 2 прямых лежит в некоторой плоскости (в данном случае прямая а), а другая прямая (прямая b) пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.