Ученикам 8 класса вопрос в равнобедренной трапеции большое основание 7,5 см, боковая сторона 2 см, а ее острый угол 60°. найдите периметр этой трапеции.
Решение: 1) Проведём высоту. Получился прямоугольный треугольник. 2) Сумма углов в треугольнике равна 180°(градусов). Два угла нам уже даны: угол 60° и угол 90°. Найдём чему равен третий: 180°- (60°+90°)=30° 3) По свойству углов в прямоугольном треугольнике сторона (катет) лежащая напротив угла в 30° равна половине гипотенузы. Гипотенуза нам уже дана, она равна 2 см. Значит катет напротив угла в 30° равен 1 см. 4) Проведём ещё одну высоту в трапеции и получим точно такой же прямоугольный треугольник. Длина большого основания трапеции нам дана. Значит можем найти маленькое основание. Для этого вычтем из длины большого катеты (основания) треугольников: 7,5 см - 1 см - 1 см =5,5 см. 6) Теперь найдём периметр трапеции. Формула: Р=а+b+с+d Р= 5,5 см+ 2 см + 7,5 см + 2 см=17 см. ответ: 17 см.
Cм. рисунок и обозначения в приложении По теореме косинусов (2√3)²=6²+х²-2·6·х·cos 30° 12=36+x²-6√3·x=0 x²- 6√3·x+24=0 D=108-96=12 x=(6√3-2√3)/2=2√3 или х=(6√3+2√3)/2=4√3
если х=2√3, то диагональ делит параллелограмм на два равнобедренных треугольника. Углы параллелограмма 60° и 120°
если х=4√3 то по теореме косинусов ( α - угол параллелограмма , лежащий против диагонали) 6²=(2√3)²+(4√3)²-2·2√3·4√3 ·cos α ⇒ 36=12+48-48·cosα⇒
cosα=0,5
α=60° второй угол параллелограмма 120° см. рисунок 2 ответ 120° и 60°
Окружность360°, 3х+5х+10х=360° 18х=360 х=20 3*20=60 если начертит чертеж получим треугольник, две стороны которого равны радиусу, угол у вершины равен60° основание ьреугольника равно 12 см, отпустим с вершины треугольника на основание высоту, так как у нас треугольник равнобедренный, то эта высота будет и медианой и биссектрисой. когда отпусти высоту получим прямоугольный треуголник 12:2= 6 см, напротив лежит угол 30°, сторона в 6 см является катетом, а гипотенуза радиус, значит радиус равен 12см. по правилу катет лежащий напротив 30° равен половине гипотенузы.
1) Проведём высоту. Получился прямоугольный треугольник.
2) Сумма углов в треугольнике равна 180°(градусов). Два угла нам уже даны: угол 60° и угол 90°. Найдём чему равен третий:
180°- (60°+90°)=30°
3) По свойству углов в прямоугольном треугольнике сторона (катет) лежащая напротив угла в 30° равна половине гипотенузы. Гипотенуза нам уже дана, она равна 2 см. Значит катет напротив угла в 30° равен 1 см.
4) Проведём ещё одну высоту в трапеции и получим точно такой же прямоугольный треугольник.
Длина большого основания трапеции нам дана. Значит можем найти маленькое основание. Для этого вычтем из длины большого катеты (основания) треугольников: 7,5 см - 1 см - 1 см =5,5 см.
6) Теперь найдём периметр трапеции. Формула: Р=а+b+с+d
Р= 5,5 см+ 2 см + 7,5 см + 2 см=17 см.
ответ: 17 см.