Треугольник abd подобен adc.
Объяснение: 1. Угол b равен углу DAC т.к это р/б треугольник и можно найти углы A и C (180-36=144, делим на 2 так как углы равны, равняется 72). AD- биссектриса и делит угл A на 2 (72/2=36, значит BAD и DAC=36)
2. Угол C равен углу BDA так как треугольник BAD - р/б. Так как угл BAD=36 и ABD=36 можно найти BDA (180-36-36=72), а угл C=72 по первому пункту (так как угл A равен углу C как р/б треугольник).
Получается что Угол B=DAC и угол C=BDA
Значит подобны по первому признаку по двум углам
Поскольку окружность касается осей координат и проходит через точку, расположенную в первой координатной четверти, то центр окружности лежит на прямой y = x. Значит, абсцисса и ордината центра окружности равны её радиусу. Следовательно, уравнение окружности имеет вид (x - R)2 + (y - R)2 = R2. Поскольку точка A(2;1) лежит на окружности, координаты этой точки удовлетворяют полученному уравнению, т.е. (2 - R)2 + (1 - R)2 = R2. Отсюда находим, что R = 1 или R = 5. Следовательно, искомое уравнение имеет вид:
(x - 5)2 + (y - 5)2 = 25 или (x - 1)2 + (y - 1)2 = 1. Решение:
Площадь полной поверхности призмы
Sпол = 2Sосн + Sбок;
Площадь основания по формуле Герона:
Sосн = √(p(p-a)(p-b)(p-c)); p = (a+b+c)/2
p= 3*12/2 = 18 см.
Sосн = √(18*6*6*6) = 36*√3 см².
Sбок = P*H;
периметр основания P = 3*12=36 см.
Высоту призмы найдем по т. Пифагора из прямоугольного треугольника CBB₁
H = BB₁ = √(B₁C² - CB²) = √(15² - 12²) = √(225-144) = √81 = 9 см.
Sбок = 36*9 = 324 см².
Sполн = 2*36*√3 см² + 324 см² = 72√3 + 324 см²