Эту задачу можно решить разными Один дан в первом решении. Пусть данный треугольник будет АВС, ВН- высота к основанию. АК - высота к боковой стороне. В прямоугольном треугольнике СВН катет ВН относится к гипотенузе СВ как 4:5, ⇒ Δ СВН - египетский и СН=3 ( то же получится и по т. Пифагора) 1. Проведем НМ перпендикулярно ВС Δ ВНС ~ Δ НМС - прямоугольные с общим углом при С. Из подобия НС:ВС=МН:ВН⇒ 3:5=МН:4 ⇒ МН=2,4 В равнобедренном треугольнике АВС высота и медиана ВН делит АС пополам. В треугольнике АКС отрезки АН=НС, МН параллельна АК ⇒ МН средняя линия △АКС АК=2 МН=2*2,4=4,8 ------- 2. Пусть ВК=х, тогда КС=5-х. АК²=АВ²-ВК² АК²=АС²-КС² АВ²-ВК²=АС²-КС² 25-х²=36-25+10х-х² 10х=50-36=14 х=1,4 АК²=АВ²-ВК² АК=√( 25-1?96)=4,8
1) В прямоугольном треугольнике АВС <C=90°, <B=60° и <A=30° (90°-60°). Найти надо катет АС (против <60°). Тогда гипотенуза АВ=2*СВ (катет СВ лежит против угла 30°). По Пифагору АС=√(4СВ²-СВ²)=СВ√3. Площадь тр-ка АВС = (1/2)* АС*СВ = СВ²√3/2 = 50√3/3. Отсюда СВ²=50*2/3, а СВ = √(100/3)=10/√3. Но АС=СВ√3 (смотри выше). Мтак, искомый катет АС = (10/√3)*√3 = 10. 2) Касательные к окружности с центром 0 в точках A и B пересекаются под углом 72 градуса. найдите угол ABO. То есть касательные пересекаются под углом 72° (предположим, в точке С). Точки касания - А и В. Центр О. Значит в четырехугольнике ОАСВ угол АОВ=108°. Треугольник ОАВ равнобедренный, так как АО и ВО - радиусы. Тогда исклмый угол АВО = (180°-108°):2 = 36°
пусть 1 угол-х, тогда 2 угол-(х+30)
х+х+30=180
2х=180-30
2х=150
х=75 градусов - 1 угол
75+30=105 градусов - 2 угол