∆АВС – прямоугольный с прямым углом АВС по условию;
Сумма острых углов в прямоугольном треугольнике равна 90°, тогда угол АСВ=90°–угол ВАС=90°–45°=45°.
Получим что угол ВАС=угол АСВ, следовательно ∆АВС – равнобедренный с основанием АС.
Тогда АВ=ВС=100.
∆ABD – прямоугольный с прямым углом ABD по условию.
Сумма острых углов в прямоугольном треугольнике равна 90°, значит угол ADB=90°–угол BAD=90°–60°=30°.
В прямоугольном треугольнике против угла в 30° лежит катет, вдвое меньший гипотенузы.
Тоесть АВ=0,5*АD => АD=2*АВ=2*100=200.
По теореме Пифагора в прямоугольном ∆АВD:
AD²=AB²+BD²
200²=100²+BD²
40000–10000=BD²
BD=√30000
(BD=–√30000 не может быть, так как длина всегда положительна)
BD=100√3
CD=BD–ВС=100(√3)–100=100((√3)–1)
ответ: 100((√3)–1)
1)четырехугольник можно вписать в окружность только тогда, когда сумма его противоположных углов равна 180.
тогда получается, что угол В=180-угол М=180-80=100
а угол А=180-уголС=180-120=60
2)треугольники, опирающиеся на диаметр окружности являются прямоугольными, тогда угол Р и угол Е равны 90.
дуга КЕН равна 180 градусам, тогда дуга КЕ равна 180-140=40
теперь можем найти дугу РКЕ=80+40=120 и угол Н, он равен 1/2 дуги РКЕ=1/2*120=60
также можем найти угол РКН:
найдем дугу РН=180-80=100
а теперь угол РКН=1/2*100=50
Следовательно, угол РКЕ=50+70=120