М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Alinka2128
Alinka2128
05.04.2020 11:14 •  Геометрия

Впрямоугольнике abcd сторона вс на 4,3 см больше стороны ав.найдите стороны прямоугольника,если периметр равен 29,6 см

👇
Ответ:
bobrovpasha
bobrovpasha
05.04.2020
29,6:2=14,8
14,8-4,3=10,5
4,8(8 оценок)
Открыть все ответы
Ответ:
VeronicaOgne
VeronicaOgne
05.04.2020
Согласно теореме сумма двух сторон треугольника больше третьей стороны
a+b>c
Используя свойства степени (если степени равны, больше то число, основание которого больше) , возведем неравества в куб, т. е.
(a+b)^3>c^3
Раскроим скобки
a^3+3a^2b+3ab^2+ b^3>c^3
Преобразуем левую часть неравенства вынесем 3ab, получим
a^3+3a*b(a+b)+ b^3>c^3
Если a+b>c, то заменив сумму в неравнстве на число больше суммы, т. е "c", неравенство не изменится
a^3+b^3+3abc>c^3
Что и требовалось доказать
УДАЧИ!

a^3+b^3+3abc>c^3
4,8(41 оценок)
Ответ:
TANYA889933
TANYA889933
05.04.2020

1-й признак подобия треугольников

( подобие треугольников по двум углам)

Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

2-й признак подобия треугольников

( подобие треугольников по двум сторонам и углу между ними)

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие  треугольники подобны.

3-й признак подобия треугольников

( подобие треугольников по трём сторонам)

Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.

Есть еще 4-й признак подобия треугольников —

( подобие треугольников по двум сторонам и наибольшему углу)

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а наибольший угол одного равен наибольшему углу другого, то такие треугольники подобны.

Доказав, что треугольники подобны, можно использовать свойства подобных треугольников.

Для доказательства подобия прямоугольных треугольников используют другие признаки. Их мы запишем в следующий раз.

Подобие правильных и подобие равнобедренных треугольников рассмотрим позже.

Признаки подобия треугольников широко используются при решении задач как в курсе планиметрии, так и в курсе стереометрии. Например, на основании подобия прямоугольных треугольников доказывается свойство биссектрисы треугольника.

4,7(18 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ