М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Trololo2289878
Trololo2289878
29.09.2020 16:12 •  Геометрия

Решите : на отрезке ав взята точка р расстояние между серединами ар и рв=20см. ав=? см.,

👇
Ответ:
владосик13
владосик13
29.09.2020
Точка К середина отрезка АР, точка Н-середина РВ
АК=КР, РН=НВ, КР+РН=20, АК+НВ=20, АВ=20+20=40
4,4(7 оценок)
Открыть все ответы
Ответ:
Sergeeva1703
Sergeeva1703
29.09.2020
V = 1/3 * S_{osnovania} * H

Так как угол при вершине равен 60 и пирамида правильная, ребром является правильный треугольник. Высота которого равна 12.

Высота в правильном треугольнике является медианой,высотой и биссектрисой. Следовательно можно разделить треугольник на две равные части (два прямоугольных треугольника) Тогда один угол выйдет 30*, второй 60* и третий 90*

Так как катет лежащий против угла 30* равен половине гипотенузы, пусть гипотенуза 2x, а катет против угла 30* = x.

Тогда по теореме Пифагора получим:
4x^{2} = x^{2} +144 \\ 
 \\ 
3x^{2} = 144 \\ 
 \\ 
x^{2} = 48 \\ 
 \\ 
x=4 \sqrt{3}

Так как пирамида правильна, ее основание - квадрат.
S_{osnovania} = a^{2} = (4 \sqrt{3}) ^{2} =48

Теперь осталось найти высоту.
Из прямоугольного треугольника гипотенузой которого служит апофема, а один из катетов высота, и зная что угол между проекцией апофемы на основание и самой апофемой равен 60, значит трейтий угол 30, катет лежащий против угла 30* равен половине гипотенузы, т.е. половина  12, = 6
По теореме Пифагора:
h^{2} =144-36=108 \\ 
 \\ 
h= 6 \sqrt{3}

V= \frac{1}{3} *6 \sqrt{3}* 48=96 \sqrt{3}
4,7(5 оценок)
Ответ:
lizarodionov6Liza
lizarodionov6Liza
29.09.2020
Основаниями правильной треугольной призмы ABCA1B1C1 являются равные правильные треугольники со стороной а. 
Через сторону основания AB под углом 45° к плоскости основании призмы проведено сечение, пересекающее ребро CC1.

Треугольники DAC и DBC равны по двум сторонам и углу между ними:
AC=BC (как стороны правильного треугольника)
CD - общая сторона
∠ACD = ∠BCD = 90° (т.к. призма правильная)
⇒ AD = BD 
⇒ сечение - равнобедренный треугольник с основанием AB

В прямоугольном треугольнике ACD:
∠ACD = 90°
∠DAC = 45°
∠ADC = 180 - 90 - 45 = 45 (°)
⇒ треугольник ACD - прямоугольный равнобедренный с основанием-гипотенузой AD, боковыми сторонами - катетами AC = DC = a

по теореме Пифагора:
AD² = AC² + DC²
AD² = a² + a²
AD² = 2a²
AD = a√2 (см)

В равнобедренном треугольнике ABD:
DE - высота, а также медиана и биссектриса, проведенная к основанию ⇒ AE = AB/2
AE = a/2

В прямоугольном треугольнике ADE:
Гипотенуза AD = a√2
Катет AE = a/2

По теореме Пифагора
AD² = AE² + DE²
(a√2)² = (a/2)² + DE²
DE² = 2a² - a²/4
DE² = 8a²/4 - a²/4
DE² = 7a²/4
DE = √(7a²/4)

            a√7
DE = ---------- (см)
              2

S(ABD) = 1/2 * a * DE

                   1                  a√7         a * a√7           a²√7
S(ABD) = ------- *  a  * ---------- = --------------- = ------------ (см²)
                   2                    2            2 * 2                 4

Не соответствует ни одному из вариантов ответа. 
Через сторону основания правильной треугольной призмы под углом 45 к основанию проведено сечение пер
4,8(46 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ