АВСЕ - пирамида с вершиной Е. В основании лежит правильный тр-ник, для которого радиус описанной окружности в два раза больше радиуса описанной окружности. r=R/2. ОК=ОВ/2=2а/2=а. ЕК - апофема на сторону АС. В тр-ке ЕКО ЕК²=ЕО²+ОК²=3а²+а²=4а², ЕК=2а - апофема. б) ЕК/ОК=2а/а=2. В прямоугольном треугольнике ЕОК гипотенуза ЕК вдвое больше катета ОК, значит ∠КЕО=30°, следовательно ∠ЕКО=60° - угол между боковой гранью и основанием. в) Площадь боковой поверхности: Sб=Р·l/2, где Р - периметр основания, l - апофема. R=AB/√3 ⇒ AB=R√3=2a√3. P=3AB=6a√3. Sб=6a√3·2a/2=6a²√3 (ед²).
Правильный шестиугольник можно разделить на 6 правильных треугольников, поэтому площадь шестиугольника будет равна
, где а - сторона шестиугольника и любого из правильных треугольников. Зная площадь шестиугольника, мы находим, что . Каждая сторона шестиугольника стягивает дугу в 360\6= 60 градусов. А каждая сторона квадрата стягивает 360\4=90 градусов. Составим отношение: 60\а=90\б, где б - сторона квадрата. Выразим б. б=90а\60=. Площадь квадрата - это квадрат его стороны, поэтому его площадь будет равна 18.
АВ=2ВС
60=2(2ВС+ВС)
40=3ВС
ВС=13 ⅓
АВ=26 ⅔