Вравнобедренной трапеции острые углы равны 60 градусов боковая сторона равна 12 см а большее основание 18 см. найдите меньшее основание и среднюю линию трапеции
Проведём высоты BH и CP. Рассмотрим треугольник ABH:
∠А = 60° по условию, ∠АВН = 90°; по теореме о сумме углов треугольника получаем: ∠АВН = 90° - 60° = 30°. АН = 0,5 АВ = 6 см, как катет прямоугольного треугольника, лежащий против угла в 30°. Так как трапеция ABCD - равнобедренная, то PD = AH = 6 см.
НР = AD - AH - PD = 18 - 12 = 6 см. BC = HP = 6 см, как противоположные стороны прямоугольника.
Средняя линяя трапеции равна полу сумме оснований ⇒ MN = (ВС + НР)/2 = (18 + 6)/2 = 12 см.
Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.
Признак равенства по гипотенузе и острому углу.Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по двум катетам.Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по катету и гипотенузе.Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по катету и острому углу.Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Дано: ∠А = ∠D = 60°, AB = CD = 12 см, AD = 18 см.
Найти: BC, MN (средняя линия)
Проведём высоты BH и CP. Рассмотрим треугольник ABH:
∠А = 60° по условию, ∠АВН = 90°; по теореме о сумме углов треугольника получаем: ∠АВН = 90° - 60° = 30°. АН = 0,5 АВ = 6 см, как катет прямоугольного треугольника, лежащий против угла в 30°. Так как трапеция ABCD - равнобедренная, то PD = AH = 6 см.
НР = AD - AH - PD = 18 - 12 = 6 см. BC = HP = 6 см, как противоположные стороны прямоугольника.
Средняя линяя трапеции равна полу сумме оснований ⇒ MN = (ВС + НР)/2 = (18 + 6)/2 = 12 см.
ответ: MN = 12 см, BC = 6 см.