равнобедренный треугольник вписанный круг, который делит боковую сторону в отношение 2 : 3, начиная от вершины, что лежит против основы. Найдите периметр треугольника, если его основа равна 12 см.Треугольник АВС, АВ=ВС, АС=12, точка М касание на АВ, точка Н касание на ВС, точка К касание на АС, ВМ/АМ=2/3 = ВН/СН, АМ=АК как касательные проведенные из одной точки =3, СК=СН как касательные проведенные из одной точки = 3АС=АК+СК=3+3=6 = 12 см1 часть=12/6=2АВ=3+2=5 частей = 5 х 2 =10 = ВСпериметр = 10+10+12=32
Вспомним, что четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин противоположных сторон равны между собой. Значит, сумма боковых сторон равна 4+9=13 Пусть дана трапеция АВСД, ВС||АД, углы А и В - прямые. Опустим из С высоту СН на основание АД. Тогда АВСН - прямоугольник, АН=ВС=3, АВ=СН=х, СД=13-х. По т.Пифагора найдем х: (13-х)²=х²+5² 169-26х=х²=х²+25 26х=144 х=144/26 Площадь трапеции равна половине произведения высоты на полусумму оснований: S=CH*(ВС+АД):2 S=(144/26)*13/2=36 (ед. площади) ------- У прямоугольной трапеции есть свойство: площадь прямоугольной трапеции, описанной около окружности, равна произведению ее оснований, что и подтверждается данным решением.
2R=a/sin 2R=AB/sin 60, 2R=sqrt(3/5)/(sqrt(3)/2)=2/(sqrt(5)
R=1/sqrt(5)