Обозначим угол АКО - 5х, а угол ОКВ - 4х, тогда 5х+4х=90 9х=90 х=10 значит угол АКО=50 градусов, а угол ОКВ=40 градусов. Биссектриса угла АКВ делит его на два равных угла по 45 градусов, следовательно угол между лучом КО и биссектрисой будет равен 5 градусов
1) АВС данный равнобедренный треугольник. АВ=ВС, Основание АС. Пусть АВ будет х, тогда АС 2х. Р=АВ+ВС+АС, так как Р=18.4 по условию, то 18.4=х+х+2х 18,4= 4х х=4,6 Следовательно АВ=ВС=4.6 Так как основание в два раза больше , то АС= 2*4,6=9,2
2)Дано равнобедренный треугольник АВС, угол ДВС внешний угол при вершине. По свойству внутреннего угла ДВС= угол А+угол С Треугольник АВС равнобедренный по условию, тогда угол А= углу С= х 76=х+х 76=2х х=76:2 х=38 угол А=углу С= 38 так как сумма углов треугольника 180, то угол В= 180-(А+С) В=180-(38+38)=180-76=104 ответ: угол А= 38, угол С= 38, угол В= 104
Обозначь расстояние,которое нужно найти ОH, ОН перпендикулярна МN. Угол НМО=углу ОМК (МО-биссестриса).Угол МНО=УГЛУ ОКМ=90 градусов,т.к ОН-перпендикуляр. Треугольник МНО подобен треугольникуМОК,а в подобных треугольниках МО:МО=НО:ОК, отсюда ОН/9=1 ОН=9.
2)Раз по гипотенузе и острому углу,то тр-к-прямоугольный.Строим прямой угол,на одной его стороне отмечаем точку,из этой точки откладываем острый угол и цир- кулем откладываешь гипотенузу до пересечения со 2 стороной.
3) Проводим прямую,на ней ставим точку.Из этой точки откладываешь угол 150 градусов.
тогда 5х+4х=90
9х=90
х=10
значит угол АКО=50 градусов, а угол ОКВ=40 градусов.
Биссектриса угла АКВ делит его на два равных угла по 45 градусов, следовательно угол между лучом КО и биссектрисой будет равен 5 градусов