ответ: обратная теорема - теорема, в которой условием является заключение, а заключением – условие данной теоремы. например, теоремы: "если два угла треугольника равны, то их биссектрисы равны" и "если две биссектрисы треугольника равны, то соответствующие им углы равны" — являются обратными друг другу.
обратная теорема, теорема, условием которой служит заключение исходной теоремы, а заключением — условие.
например:
теорема:
у равнобедренного треугольника углы при основании равны
обратная:
если в треугольнике углы при основании равны, то этот треугольник равнобедренный
теорема:
в треугольнике против большей стороны лежит больший угол
обратная:
в треугольнике против большего угла лежит большая сторона
теорема:
прямоугольник - параллелограмм, у которого равны диагонали.
обратная:
параллелограмм с равными диагоналями является прямоугольником.
` ` — Здравствуйте, Norfsakilla! ` `
• Объяснение:
— | Чтобы правильно решить данную задачу, нужно быть очень умным и внимательным. | —
• Решение:
— | А теперь, давайте приступим к решению данной задаче. Начнём с 4-го и до 1-го. | —
• Фигура Nō⁴ : У фигуры номер ⁴ нет равных пар треугольников, потому что они не совпадают из за овалов, которые находятся в самом нижнем углу.
• Фигура Nō³ : У фигуры номер ³ нет равных пар треугольников из-за тех же овалов, которые находятся в нижнем углу.
• Фигура Nō² : Многие могут подумать, что правильным ответом будет считаться Фигура номер ², но они глубоко ошибаются, потому что у второй пары треугольника нет маленького квадратика в нижнем углу, который есть у первой пары треугольника, и также, это сто процентов никто не заметил, но я заметила : у второй пары треугольника, где нет квадратика, на букве М есть рядом маленькая и незаметная точечка. Приглядитесь.
• Фигура Nō¹ : А вот фигура номер ¹ может считаться правильным ответом, потому что квадратики, точечки и маленькие полосочки по серединке совпадают.
— | А теперь, когда мы разобрали данную задачу и нашли правильный ответ, мы можем записать его. | —
• ответ: у фигуры Nō¹ пары треугольников равны.
` ` — С уважением, EvaTheQueen! ` `