ответ:Если две прямые на плоскости,в данный момент это ВК и MN ,перпендикулярны к одной и той же прямой АС,то они параллельны,т к к прямой в плоскости из любой точки можно провести только один перпендикуляр
Параллельность прямых доказана
Теперь об углах
<СМN и <СВК являются соответственными и равны между собой
<СМN=<CBK=46 градусов
В условии сказано,что ВК биссектриса угла АВС
Биссектриса делит угол из которого она проведена на два равных угла,один из них угол СВК
<АВС=<СВК•2=46•2=92 градуса
Объяснение:
много очков, а вобщем-то не за что.
Сумма острых углов в прямоугольном треугольнике 90 градусов, поэтому сумма их половин 45 градусов, и углы между биссектрисами острых углов будут 45 градусов и 135 (ну, там 4 угла, пары вертикальных... в сумме 180, конечно). Значит, речь идет не о двух острых углах, а о прямом и остром.
Тем же определяем, что углы между биссектрисами прямого и острого угла Ф равны Ф/2 + 45 градусов и 135 - Ф/2 градусов.
в первом случае Ф =2*(70 - 45) = 50 градусов, а второй угол треугольника 90 - Ф = 40 градусов.
Во втором случае 135 - Ф/2 = 70 просто получается Ф > 90.
То есть ответ 40 и 50 (третий угол 90, конечно), в таком треугольнике биссектрисы углов 90 градусов и 50 градусов пересекаются под углом 70 градусов.
Рассмотрим прямоугольную трамецию АВСD, в прямоугольных трапециях всегда 2 угла равны 90 градусам (по свойству прямоугольной трапеции), то есть угол А и угол В равны, а они равны 90 градусам. Следовательно, если нам дано, что угол D равен 20 градусов, а все углы кроме одного нам известны, то мы можем найти угол С. Сумма углов любой трапеции равна 360 градусам (по свойству трапеции), следовательно, угол С равен 360-90-90-20=160 градусов
ответ: угол А - 90 градусов, угол В - 90 градусов, угол С - 160 градусов, угол D - 20 градусов