1. Дана окружность с центром в точке O. AB –диаметр, точка C отмечена на окружности,
угол A равен 470 . Найдите угол C и угол B.
2. AB и AC – отрезки касательных, проведенных к окружности радиуса 6 см. Найдите длинуOA и AC, если AB = 8 см.
3. Точки A и B делят окружность с центром O на дуги AMB и ACB так, что дуга ACB на 800меньше дуги AMB. AM – диаметр окружности. Найдите углы AMB, ABM, ACB.
4. Найдите радиус окружности, вписанной в треугольник, и радиус окружности, описанной около треугольника, стороны которого равны 16 см, 17 см и 17 см. Контрольная работа № 5 по теме: «Окружность» Вариант 2
1. Дана окружность с центром в точке O. AB –диаметр, точка C отмечена на окружности,
Есть простое решение, использующее свойство медиан: три медианы треугольника делят его на 6 равновеликих (одинаковой площади, но не равных) треугольников. Данный нам треугольник АВС Пифагоров (его стороны равны 3,4 и 5 см). Sabc=6см² и каждый из треугольников имеет площадь, равную 1см². Тогда искомое расстояние - высота треугольника (одного из шести) с катетом на гипотенузе AB. h=2S/АM = 2/(2,5)=0,8 см.
Но для практики решим эту задачу через формулу медианы треугольника, свойство медиан, делящихся точкой пересечения в отношении 2:1, считая от вершины и формулу Герона для площади. Пусть в треугольнике АВС <С=90° и стороны АС=b=3, ВС=а=4 и АВ=с=5. Найдем медианы Ма и Мc по формуле: Ma=(1/2)*√(2b²+2c²-a²). Ma=(1/2)*√(2*(3²)+2*(5)²-4²)=(1/2)*√(18+50-16)=√52/2. Mc=(1/2)*√(2*(3²)+2*(4)²-5²)=(1/2)*√(18+32-25)=5/2. Тогда отрезки медиан: АО=(2/3)*(√52/2)=2√13/3. ОМ=(1/3)*(5/2)=5/6. В треугольнике АОМ имеем (сразу приведя к общему знаменателю): АМ=5/2 = 15/6. АО=2√13/3=4√13/6. ОМ=5/6. Периметр Р=(20+4√13)/6. Полупериметр р=(10+2√13/6). Тогда по формуле Герона Sabc=√[p(p-a)(p-b)(p-c)] имеем: Sаom=√[(10+2√13)*(10+2√13-15)*(10+2√13-4√13)*10+2√13-5)]/36. Или:Sаom=√[(10+2√13)*(2√13-5)*(10-2√13)*(2√13+5)]/36. Мы видим, что у нас под корнем произведение разности квадратов: Sаom=√[(10²-(2√13)²)*((2√13)²-5²)/36 = √(48*27)/36=36/36 =1. Итак, мы пришли к началу: Искомое расстояние (высота ОН, проведенная к основанию АМ треугольника АОМ: ОН=2Sbom/АМ = 2/2,5 = 0,8. ответ: ОН=0,8см.
P.S. Решение приведено для тех, кто не любит формулу Герона, тем более, когда в полупериметре встречаются корни. Чаще всего (если не всегда) приходим к произведению разности квадратов в подкоренном выражении.
угол A равен 470 . Найдите угол C и угол B.
2. AB и AC – отрезки касательных, проведенных к окружности радиуса 6 см. Найдите длинуOA и AC, если AB = 8 см.
3. Точки A и B делят окружность с центром O на дуги AMB и ACB так, что дуга ACB на 800меньше дуги AMB. AM – диаметр окружности. Найдите углы AMB, ABM, ACB.
4. Найдите радиус окружности, вписанной в треугольник, и радиус окружности, описанной около треугольника, стороны которого равны 16 см, 17 см и 17 см.
Контрольная работа № 5 по теме: «Окружность» Вариант 2
1. Дана окружность с центром в точке O. AB –диаметр, точка C отмечена на окружности,