Даны четыре точки А( -5;0;3) В(2;3;-2) С(-1;0;-5) D(-8;-3;0). Указать среди векторов AB, AC,AD,BC,BD, CD равные векторы. Равные векторы - это сонапаравленные векторы, равные по модулю. Сонаправленные векторы, это векторы, координаты которых пропорциональны и коэффициент пропорциональности ПОЛОЖИТЕЛЕН. Найдем координаты и модули искомых векторов. Координаты вектора равны разности соответствующих координат точек его конца и начала ab{х2-х1;y2-y1;z2-z1}. Модуль или длина вектора: |a|=√(x²+y²+z²) В нашем случае: Вектор АВ{2-(-5);3-0;-2-3} или АВ{7;3;-5}. |AB|=√(49+9+25)=√83. Вектор АC{-1-(-5);0-0;-5-3} или АВ{4;0;-8}. |AC|=√(16+0+64)=√80. Вектор АD{-8-(-5);-3-0;0-3} или АВ{-3;-3;-3}. |AD|=√(9+9+9)=√27. Вектор BC{-1-2;0-3;-5-(-2)} или ВC{-3;-3;-3}. |BC|=√(9+9+9)=√27. Вектор BD{-8-2;-3-3;0-(-2)} или ВD{-10;-6;2}. |BD|=√(100+36+4)=√140. Вектор CD{-8-(-1);-3-0;0-(-5)} или CD{-7;-3;5}. |CD|=√(49+9+25)=√83. Векторы АВ и CD равны по модулю, но имеют отрицательный коэффициент пропорциональности. Значит они направлены в противоположные стороны. Итак, равные векторы ТОЛЬКО векторы AD и BC.
Обозначим коэффициент пропорциональности через k, тогда диагонали ромба 3k и 4k. С одной стороны площадь ромба равна половине произведения диагоналей, то есть: Sabcd = 1/2 d₁ * d₂ = 1/2 *3k *4k = 6k² C другой стороны площадь ромба равна произведению стороны на высоту, то есть: B Sabcd = AH * BC OC = 1,5k BO = 2k H Из ΔBOC по теореме Пифагора BC² = (1,5k)² + (2k)² = 6,25k² A O C BC = 2,5k Sabcd = 3,6 * 2,5k = 9k Следовательно D 6k² = 9k 2k = 3 k = 1,5 Значит BC = 2,5 * 1,5 = 3,75 Pabcd = 4 * 3,75 = 15
Стороны ромба равны, следовательно сторона ромба= 40:4=10 см. Проведем диагональ, противоположную углу в 60 градусов. Имеем равнобедренный треугольник. опустим перпендикуляр на противоположную диагональ. Т.К. треуг. у нас равнобедренный, то он является и биссектрисой, т.е разделил угол 60 градусов пополам. Теперь воспользуемся теоремой, что катет , лежащий против угла в 30 градусов = половине гипотенузы, имеем половина искомой диагонали = 10:2=5, вся диагональ = 10 см. А чертеж просто нарисуй ромб.
Равные векторы - это сонапаравленные векторы, равные по модулю.
Сонаправленные векторы, это векторы, координаты которых пропорциональны и коэффициент пропорциональности ПОЛОЖИТЕЛЕН.
Найдем координаты и модули искомых векторов.
Координаты вектора равны разности соответствующих координат точек его конца и начала ab{х2-х1;y2-y1;z2-z1}.
Модуль или длина вектора: |a|=√(x²+y²+z²)
В нашем случае:
Вектор АВ{2-(-5);3-0;-2-3} или АВ{7;3;-5}. |AB|=√(49+9+25)=√83.
Вектор АC{-1-(-5);0-0;-5-3} или АВ{4;0;-8}. |AC|=√(16+0+64)=√80.
Вектор АD{-8-(-5);-3-0;0-3} или АВ{-3;-3;-3}. |AD|=√(9+9+9)=√27.
Вектор BC{-1-2;0-3;-5-(-2)} или ВC{-3;-3;-3}. |BC|=√(9+9+9)=√27.
Вектор BD{-8-2;-3-3;0-(-2)} или ВD{-10;-6;2}. |BD|=√(100+36+4)=√140.
Вектор CD{-8-(-1);-3-0;0-(-5)} или CD{-7;-3;5}. |CD|=√(49+9+25)=√83.
Векторы АВ и CD равны по модулю, но имеют отрицательный коэффициент пропорциональности. Значит они направлены в противоположные стороны.
Итак, равные векторы ТОЛЬКО векторы AD и BC.