Объяснение:
{ AM - MB = 7
{ MB = AM\2
=>
AM - (AM\2) = 7 > 2AM - AM = 14 >
AM = 7 и
MB = AM\2 = 7\2 = 3,5
11) AM =MB = AB > L A = L M = L B = 180\3 = 60 град.
AM = MB и MD _|_ AB > L AMD = L M\2 = 60\2 = 30 град. =>
DM = 2 * DE = 2 * 4 = 8
14) AKM = AEM, так как L MAK = L MAE и L AKM = L AEM =>
и L AMK = L AME => треугольники подобны по трем углам, а равны, так как гипотенуза АМ общая =>
KM = EM = 13
15) L CMB = 180 - (L C + L CBM) = 180 - (70 + 40) = 70 град.
L BMD = 180 - (L MBD + L MDB) = 180 - (40 + 90) = 50 град.
L AMD = 180 - (L CMB + L BMD) = 180 - (70 + 50) = 60 град. =>
MD = AM\2 = 14\2 = 7 Незнаю наверное правильно
пусть ad> bc , тогда острые углы равные 75 и 15 гр лежат при оснований ad , положим что y,w середины сторон ab и cd соответственно , тогда yw средняя линия трапеции , значит ad+bc=2yw из условия мы знаем что yw равна либо 15 либо 7 , положим что ab и cd пересекаются в точке e , тогда aed=180-(75+15)=90 , положим также что z,x это середины сторон основании bc,ad соотвественно , пусть n точка пересечения yw и zx , тогда по замечательному свойству трапеции точки e,z,x лежат на одной прямой , учитывая что угол aed прямой , получаем что ax=ex=ad/2 , ez=bz=bc/2 , но так как ex=ez+zx откуда окончательно получаем две системы
{ad-bc=2*7
{ad+bc=2*15
или
{ad-bc=2*15
{ad+bc=2*7
подходит решение первой системы , так как они положительны , складывая получаем ad=22 , bc=8 , значит ответ bc=8.