Нет возможности построить рисунок. Постараюсь объяснить без него.
Угол между образующей и проекцией на плоскость основания конуса- угол между образующей и плоскостью основания- это угол между образующей и радиусом основания, угол этот равен 30° .Значит, высота конуса лежит против угла в 30° в прямоуг. треугольнике и равна половине гипотенузы, равной 6см и равна эта высота 3см.
Квадрат радиуса тогда равен 6²-4²=20
объем конуса равне произведению трети высоты , т.е. 3*(1/3)=1 на площадь основания, т.е. на 20π
Объем равен 1*20π=20π/см³/
Построение к решениям заданий 1, 2 и 3 см. на фото.
1) 1¹ - проекция точки пересечения прямой и плоскости, т. к. плоскость фронтально проецирующая. Горизонтальную проекцию точки пересечения можно найти с третьей проекции.
Расстояние от оси х до точки 1 взято с профильной проекции и отмечено фигурной скобкой.
Точка n¹ находится ниже а¹b¹c¹, значит на горизонтальной проекции n и часть прямой до точки пересечения невидимая.
2) g и g₁¹- проекции горизонтали, f и f¹ - проекции фронтали.
3) Т.к. ВЕ:ЕС=1:2, отступим отрезок е¹с¹ в два раза больше b¹е¹. Получим точку с¹. АВСD -параллелограмм, значит проекции противоположных сторон а¹b¹с¹d¹ и аbсd параллельны.
АЕ - высота, следовательно ек перпендикулярен горизонтальной проекции горизонтали bc. Сносим на проекцию ек точку а и достраиваем параллелограмм.
Надеюсь,что вам. Желаю удачи!