Даны точки A(2,4,-1) B (-1,1,3), C(5,1,2). Найдите координаты точки D, такой , что четырёхугольник ABCD - параллелограмм
Объяснение:
.Пусть координаты D(x;у) .Т.к. ABCD-параллелограмм, то
диагонали , точкой пересечения , делятся пополам. Пусть О-точка пересечения . Тогда
1) АО=СО. Координаты О : х(О)=(х(А)+х(С)):2 , х(О)=(2+5):2=3,5. Аналогично у(О)=(4+1):2=2,5 , z(O)=(-1+2):2=0,5.
2) ВО=DО.
х(О)=(х(B)+х(D)):2 , 3,5=(-1+x(D)):2, 7=-1+x(D), x(D)=8;
y(О)=(y(B)+y(D)):2 , 2,5=(1+y(D)):2, 5=1+y(D), y(D)=4;
z(О)=(z(B)+z(D)):2 , 0,5=(3+z(D)):2, 1=3+z(D), z(D)=-2;
D( 8; 4; -2).
.
Точка D может быть получена параллельным переносом точки C на вектор BA . Вектор BA( 2+1 ;4-1 ; -1-3 ) или вектор ВА(3;3;-4).Вектор ВА=СD , значит и координаты равны ⇒ х(СD)=x(D)-x(C) или 3=x(D)-5, x(D)=8 .
Аналогично 3=у(D)-1, у(D)=4 .
-4=z(D)-2 , z(D)=-2 . Получили D( 8; 4; -2).
достроим прямоугольник до квадрата со стороной a + b, как показано на рисунке 1.
так как площадь квадрата равна квадрату его стороны, то площадь этого квадрата равна (a + b)2.с другой стороны, этот квадрат составлен из данного прямоугольника с площадью s, равного ему прямоугольника с площадью s (так как, по свойству площадей, равные многоугольники имеют равные площади) и двух квадратов с площадями a2 и b2. так как четырехугольник составлен из нескольких четырехугольников, то, по свойству площадей, его площадь равна сумме площадей этих четырехугольников: (a + b)2 = s + s + a2 + b2, или a2 + 2ab + b2 = 2s + a2 + b2.отсюда получаем: s = ab, что и требовалось доказать.