Теорема косинусов для треугольника AМC
AC^2=AM^2+MC^2-2*AM*CM*cosAMC
Теорема косинусов для треугольника BМC
BC^2=BM^2+MC^2-2*BM*CM*cosBMC
AC=BC (треугольник равносторонний) Тогда AC^2=BC^2
AM^2+MC^2-2*AM*CM*cosAMC=BM^2+MC^2-2*BM*CM*cosBMC
AM^2-2*AM*CM*cosAMC=BM^2-2*BM*CM*cosBMC
АМ и ВM знаем
22^2-2*22*CM*cosAMC=1010^2-2*1010*CM*cosBMC
484-44*CM*cosAMC=1020100-2020*CM*cosBMC
Углы ВМС и ВАС равны, опираются на одну дугу. ВАС=60 - равносторонний треугольник.
Угол АМС=АМВ+ВМС=АСВ+ВАС=60+60=120
484-44*CM*cos120=1020100-2020*CM*cos60
484-44*CM*(-1/2)=1020100-2020*CM*1/2
484+22*CM=1020100-1010*CM
988*CM=1019616
СМ=1032
ответ: 1032
Теорема косинусов для треугольника AМC
AC^2=AM^2+MC^2-2*AM*CM*cosAMC
Теорема косинусов для треугольника BМC
BC^2=BM^2+MC^2-2*BM*CM*cosBMC
AC=BC (треугольник равносторонний) Тогда AC^2=BC^2
AM^2+MC^2-2*AM*CM*cosAMC=BM^2+MC^2-2*BM*CM*cosBMC
AM^2-2*AM*CM*cosAMC=BM^2-2*BM*CM*cosBMC
АМ и ВM знаем
2^2-2*2*CM*cosAMC=10^2-2*10*CM*cosBMC
4-4*CM*cosAMC=100-20*CM*cosBMC
Углы ВМС и ВАС равны, опираются на одну дугу. ВАС=60 - равносторонний треугольник.
Угол АМС=АМВ+ВМС=АСВ+ВАС=60+60=120
4-4*CM*cos120=100-20*CM*cos60
4-4*CM*(-1/2)=100-20*CM*1/2
4+2*CM=100-10*CM
12*CM=96
СМ=8
ответ: 8
Діагоналі ромба точкою перетину діляться навпів.
ΔАВО. ВО=ВD/2=х; АО=АС/2=7. АО²+ВО²=АВ²;
х²+49=169, х²=169-49=120. ВО=√120. Площа ΔАВО=0,5·ВО·АО=3,5√120=
=3,5·2√30=7√30
Площа ромба у 4 рази більша за площу ΔАВО.
S(АВСD)=4·7√30=28√30≈28·5,48=153,4 см².
Відповідь: 153,4 см².