Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О. Проведем высоту через точку пересечения диагоналей. Высота делит основания равнобедренной трапеции пополам. Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x). BC/2=x·tg((180°-α)/2) AD/2=(h-x)· tg((180°-α)/2)
Из условия следует что треугольник AOB-равнобедренный а OM-его медиана проведённая к основанию.Следовательно OM-высота треугольника AOB. Тогда и медиана CM треугольника ABC является его высотой, значит, этот треугольник – равнобедренный: CA=CB. Из равнобедренности треугольников ACB и AOB следуют равенства углов при их основаниях,значит угол OBC= угол OAC. Поскольку BL-биссектриса угла ABC то AK-биссектриса угла BAC. По условию AK-высота треугольника ABC поэтому AB=AC. Таким образом AB=BC=AC то треугольник ABC-равносторонний.
Авторы книжки пожайлуста