Рассмотрим треугольник АВЕ. Он прямоугольный, ∠А равен 45°, следовательно, ∠В тоже равен 45°. Если у треуольника есть два равных угла, значит, треугольник равнобедренный, где АЕ=BE=5 см Рассмотрим треугольник CDF. Треугольник ABE и CDF равны (первый признак равенства треугольников), значит, сторона АЕ=FD=5 см. Рассмотрим прямоугольник BCEF. Т.к. две параллельные стороны прямоугольника равны, значит, EF=BC=3 см Теперь "соединяем" известные нам части стороны AD. AD = AE + EF + FD = 5 + 3 + 5 = 13 см
№1 по теореме ФалесаМN/МP = MK/ME12/8=MK/6MK= 9 МP/МN =PE/NK8/12=PE/NK = 2 : 3 №2Треугольник АВС подобен треугольнику MNK по второму признаку подобности (по двум пропорцианильным сторонам и равному углу между ними)AB/MN = BC/NK=12/6=18/9=2 - коэф.подобности,Значит AB/MN= AC/MK , MK= 12 x 7/6=14В подобных треугольниках соответствующие углы равны.угол С =60, угол А =50№3треугольник АОС подобен треугольнику ОДВ по первому признаку подобности (по двум равным углам)Периметры подобных треугольников относятся как соответствующие стороны -Периметр АОС : периметру ВОД = АО : ОВ=2 :3,Периметрр АОС = периметр ВОД х 2 /3= 21 х 2/3=14
ответ:
Координата середины отрезков = d(4;0)