В подобных треугольниках ABC и KMN равны углы В и М, С и N, АС = 3 см, KN = 6 см, MN = 4 см, ∠А = 30°
Найти: а) ВС, б) S (АВС) / S (KMN) в) AD / BD
a) ВС / MN = AC / KN ВС = AC * MN / KN = 3 * 4 / 6 = 2 см Т. к. треугольники подобны, то соответственные углы равны, поэтому - ∠K = ∠А = 30°
в) Т. к. линейные размеры треугольника KMN в два раза больше треугольника АВС, то отношение площади тр-ка KMN к площади тр-ка АВС = 4, или: S (АВС) / S (KMN) = 1 / 4 (отношение площадей фигур равно квадрату отношений их сторон) .
в) Пусть биссектриса угла С делит сторону АВ в точке D. Тогда биссектриса угла делит противоположную сторону треугольника в отношении соседних сторон, т. е: AD / BD = АС / ВС = 3 /2
дано: δ авс
∠с = 90°
ак - биссектр.
ак = 18 см
км = 9 см
найти: ∠акв
решение.
т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км.
рассмотрим полученный δ акм, т.к. ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из условия, катет км = 9/18 = 1/2 ак, то ∠кам = 30°.
т.к. по условию ак - биссектриса, то ∠сак =∠кам = 30°
рассмотрим δакс. по условию ∠аск = 90°; а∠сак = 30°, значит, ∠акс = 180° - 90° - 30° = 60°
искомый ∠акв - смежный с ∠акс, значит, ∠акв = 180° - ∠акс = 180° - 60° = 120°
ответ: 120°