*-градус
В треугольнике АВС угол А=30*, угол В=90*. Найдём угол С. С=180*-(30*+90*)=60*. Т.к. СМ биссектриса, то угол ВСМ=углу МСА=60*:2=30*.Рассмотрим треугольник АМС. Найдём угол АМС=180*-(30*+30*)=120*. Осталось найти АВ. Рассмотрим треугольник МВС. СМ=6см (ты написала в сообщении, хотя в условии это не сказано). По свойству прямоугольного треугольника (напротив угла в 30* лежит катет, который равен половине гипотенузы), то МВ=6:2=3см. Теперь рассмотрим треугольник АМС-вавнобедренный (т.к. угол МАС=углу АСМ=30*).АМ=МС=6см (т.к. боковые стороны равнобедренного треугольника). Теперь находим АВ. АВ=3см+6см=9см.
ответ: Угол ВСМ=30*, угол АМС=120*, АВ=9см.
Радиус шара равен 2. (4/3)*pi*r^3 = 32*pi/3; r^3 = 8; r = 2;
Проведем сечение пирамиды вместе с шаром через высоту пирамиды и середины противоположных сторон основания. Получился равнобедренный треугольник, у которого высота h = 6, а радиус вписанной окружности r = 2; нужно найти сторону, перпендикулярную h (основание, а боковыми сторонами будут апофемы пирамиды:))
проведем из центра вписанной окружности перпендикуляр на боковую сторону. получился прямоугольный треугольник со сторонами h - r = 4 (гипотенуза) и r = 2 (катет). Ясно, что в таком треугольнике углы 30 и 60 градусов.
Поэтому треугольник в сечении - равносторонний, и его сторона равна
h/sin(60) = 12/корень(3).
Объем пирамиды
Vp = (1/3)*6*(12/корень(3))^2 = 96;