ответ:В задачах этого параграфа двугранный угол с ребром АВ, на разных гранях которого отмечены точки С и D, для краткости будем называть так: двугранный угол CABD.
Дано: ABCD - тетраэдр;
Определим линейную меру двугранного угла DACB.
ADC ⊥ пл. АВС, тогда двугранный угол DACB и соответствующий ему линейный угол DCB равны 90о.
Определим линейную меру двугранного угла DABC.
Проведем отрезок СМ ⊥ АВ, соединим точки М и D.
то по теореме о 3-х перпендикулярах,
По определению, ∠DMC - линейный угол двугранного угла DABC.
По теореме Пифагора:
Тогда
Отсюда
Определим линейную меру двугранного угла BDCA.
то ∠АВС - линейный угол двугранного угла
Объяснение:
1. Написать уравнение окружности в общем виде, изобразить на координатной плоскости.
2. Выполнив построение, выясните взаимное расположение окружности и прямой, заданных уравнениями:
у=(х+2)2+(у+1) 2=4 ,у= –х+1 .В ответе написать пересекаются, не пересекаются, касаются
3. Написать окружности прямой, с центром в точке О(1;1) и радиусом 2 см.
Объяснение:
1.Уравнение окружности (x – х₀)²+ (y – у₀)² = R² , где (х₀; у₀)-координаты центра.
2. (х+2)²+(у+1) ²=4 окружность с центром в точке (-2;-1) , радиусом 2
у= –х+1
(х+2)²+(-х+1+1) ²=4
(х+2)²+(2-х) ²=4
х²+4х+4+4-4х+х²=4
2х²=-8 или х²=-4 корней нет ⇒ не пересекаются.
3) (x – 1)²+ (y – 1)² =4