Дано: DABC - правильная пирамида - AB=BC=AC; DO = 18 см ∠DAO = 45° Найти: S₀ -?
Высота правильной пирамиды опускается в центр вписанной/описанной окружности ⇒ OA = OB = OC = R - радиус окружности, описанной около ΔABC ΔAOD - прямоугольный: ∠AOD = 90°; ∠DAO = 45°; DO = 18 см ⇒ ∠ADO = 90° - ∠DAO = 90° - 45° = 45° = ∠DAO ⇒ ΔAOD - прямоугольный равнобедренный ⇒ AO = DO = 18 см - радиус описанной окружности R ⇒ AB = BC = AC = a = R√3 = 18√3 см
Площадь равностороннего треугольника см² Площадь основания 243√3 см² ≈ 420,9 см²
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать
Дано: АВСD - трапеция, AD║BC, AB⊥AD, BC=CD, ∠ABD=80°. Найти ∠А, ∠В, ∠С, ∠D.
Рассмотрим ΔАВD - прямоугольный (по условию), ∠ABD=80°, значит ∠BDА=90-80=10° по свойству суммы острых углов прямоугольного треугольника.
∠АВС=90°, т.к. AB⊥AD и AD║BC, поэтому ∠CBD=90-80=10°.
ΔВСD - равнобедренный, т.к. BC=CD, значит, ∠CBD=∠CDВ=10°
∠D=10+10=20°
∠С=180-20=160°
АВD - прямоугольный, ∠А=90° по условию, ∠АВD+∠ADB=90° т.к. сумма острых углов прямоугольного треугольника составляет 90°; ∠ADB=90-80=10°
∠DBC=∠ADB=10° как внутренние накрест лежащие при AD║BC и секущей BD.
∠В=80+10=90°; ∠D=10+10=20°
CD=ВС по условию, значит ΔВСD - равнобедренный и ∠СDВ=∠DBC=10°;
∠C=180-20=160°
ответ: 90°, 90°, 160°, 20°