Следуем формуле средняя линия(m)= (a+b):2 Пусть одно основание равняется х ,значит второе основание 2х Отсюда имеем уравнение : 6=(х+2х):2 6=3х:2 3х=6*2 3х=12 х=12:3 х=4 см Значит меньшее основание равняется 4 см,а большее 4*2=8см. ответ: 4 см и 8 см.
Сначала найдём высоту треугольника, лежащего в основании (она же является стороной треугольника-сечения). Треугольник в основании равносторонний, так как пирамида правильная. Применим одну из формул высоты равностороннего треугольника: h= а × √3/2 , где а - сторона. h= 9√3 × √3 /2 = 9 × 3 / 2 = 13,5 Теперь найдём параметры центра треугольника в основании пирамиды - это и будет та точка, в которой высота пирамиды делит высоту основания, образуя с ней прямой угол. Это важно для вычисления площади неправильного треугольника, которым и является искомое сечение пирамиды. В равностороннем треугольнике медианы пересекаются в центре, деля его высоты в соотношении 2:1 - 2 при угле, 1 при стороне. 13,5 :3 =4,5 - часть высоты от центра до стороны. 4,5 ×2 = 9 - часть высоты от угла до центра Таким образом мы имеем гипотенузу 15 и катет 9 прямоугольного треугольника, являющегося одной из двух частей сечения пирамиды. По теореме Пифагора найдём второй катет (Х-икс), являющийся высотой пирамиды. Х=√ (15²-9²)= √(225 - 81) = √144 = 12 Теперь мы имеем все данные для вычисления площади сечения. Сечение состоит из 2х прямоугольных треугольников (треугольник сечения, разделенный высотой пирамиды на два других). А площадь прямоугольного треугольника равна 1/2 произведения сторон, прилежащих к прямому углу. S1=12×9 /2 =54 S2=12×4,5 /2 =27 S1 + S2 = 54+27=81
Пусть одно основание равняется х ,значит второе основание 2х
Отсюда имеем уравнение : 6=(х+2х):2
6=3х:2
3х=6*2
3х=12
х=12:3
х=4 см
Значит меньшее основание равняется 4 см,а большее 4*2=8см.
ответ: 4 см и 8 см.