1. Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1. S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r. значит можно. 2. Не может. k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ . Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂. CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃. DB =BE ⇒k₂ =2k₁ ; EC =CF ⇒k₃ =2k₂ =4k₁ . AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁ ⇒ AB+BC< AC ,что невозможно.
Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂. DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.
Обозначим АВ х см,ВС у см,тогда по условию у-х=4,зн. у=4+х.ВД=12 см,АС=14см из ΔАВД и ΔАВС по теореме косинусов (учитывая,что угол В =180 -уголА и то ,что косинус тупого угла отрицательный ) запишем :12²=х²+у²-2xy соs A, 14²=x²+y²+2xycosA сложим эти равенства 12²+14²=2х²+2у²,тк у=4+х,то 144+196=2х²+2(4+х)² 2х²+2(16+8х+х²)=340 (делим на два х²+16+8х+х²=170 2х²+8х-154=0 (делим на два) х²+4х-77=0 по Виета : х1+х2= -4 х1·х2= -77,значит х1=-11,х2=7 -11 не подходит, значит одна сторона 7 см,другая (у=4+х) 11 см, а периметр равен (7+11)·2=36 см
это точка равноудаленая от A и B