Дан треугольник с вершинами а(2,4) в(2,7) и с(6,4). найдите: 1)координаты центра вписанной окружности 2)координаты центра описанной окружности 3)уравнение высоты (биссектриса,медианы) опущенной из вершины а уравнение прямой и плоскости буду
Дан треугольник с вершинами А(2,4) В(2,7) и С(6,4). Стороны треугольника АВС: a = BC, b = AC, c = AB. 1) Центр вписанной окружности находится на пересечении биссектрис.
Свойство биссектрисы треугольника:
Биссектриса треугольника делит третью сторону на отрезки, пропорциональные двум другим сторонам.
Проведём биссектрисы углов В и С. Для этого высчитываем координаты точек К и М пересечения биссектрис со сторонами, используя их свойство.
Далее по координатам вершин В и С и найденных точек К и М определяем уравнения биссектрис.
Решая систему полученных уравнений находим координаты центра вписанной окружности.
Детальные расчёты приведены в приложении.
Но для данной задачи есть более простое решение.
Находим длины сторон треугольника.
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √9 = 3, BC = √((Хc-Хв)²+(Ус-Ув)²) = √25 = 5, AC = √((Хc-Хa)²+(Ус-Уa)²) = √16 = 4. Отсюда видно, что треугольник прямоугольный,
r =(a+b-c)2 = (3+4-5)/2 = 1.
R = abc/(4S) = (3*4*5)/(4*((1/2)*3*4)) = 60/24 = 2,5.
2) координаты центра описанной окружности находятся на пересечении срединных перпендикуляров к сторонам треугольника.
Хорды AC и BD пересекаются в точке N. Докажите что: треугольник CBN подобен треугольнику DAN. Доказательство: Свойство пересекающихся хорд: "Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды". Тогда AN*NC=BN*ND или АN/ND=BN/NC. <ANB=<DNC, как вертикальные. Следовательно, треугольники СВN и DAN подобны по второму признаку: "Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны". Что и требовалось доказать.
Длины дуг, на которые разбивается описанная окружность составляют 3x, 5x, 10x 3x + 5x + 10x = 360° 18x = 360 x = 20 центральные углы, опирающиеся на дуги равны 60°, 100°, 200° Меньшей из сторон соответствует наименьший угол, 60° Два радиуса и наименьшая сторона образуют равносторонний треугольник с углом при вершине 60° и основанием 11 Найдём его боковую сторону, по теореме косинусов 11² = r² + r² - 2·r·r·cos (60°) 11² = 2·r² - 2·r²·1/2 11² = 2·r² - r² 11² = r² r = 11 Можно и проще, если угол при вершине треугольника 60°, то при основании тоже 60° и треугольник равносторонний, радиус равен стороне.
Стороны треугольника АВС: a = BC, b = AC, c = AB.
1) Центр вписанной окружности находится на пересечении биссектрис.
Свойство биссектрисы треугольника:
Биссектриса треугольника делит третью сторону на отрезки, пропорциональные двум другим сторонам.
Проведём биссектрисы углов В и С. Для этого высчитываем координаты точек К и М пересечения биссектрис со сторонами, используя их свойство.
Далее по координатам вершин В и С и найденных точек К и М определяем уравнения биссектрис.
Решая систему полученных уравнений находим координаты центра вписанной окружности.
Детальные расчёты приведены в приложении.
Но для данной задачи есть более простое решение.
Находим длины сторон треугольника.
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √9 = 3,BC = √((Хc-Хв)²+(Ус-Ув)²) = √25 = 5,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √16 = 4.
Отсюда видно, что треугольник прямоугольный,
r =(a+b-c)2 = (3+4-5)/2 = 1.
R = abc/(4S) = (3*4*5)/(4*((1/2)*3*4)) = 60/24 = 2,5.
2) координаты центра описанной окружности находятся на пересечении срединных перпендикуляров к сторонам треугольника.