Боковые стороны в р/б равны , обозначим их за Х. х+х+96=196 2х=196-96 2х=100 х=100/2 х=50 теперь проведем высоту к основанию, она же будет медианой(делить основание пополам) , у нас должно получится 2 равных прямоугольных треугольника, рассмотрим один из них: боковая сторона р/б будет гипотенузой, а один из катетов равен половине основания р/б(катет1): катет1=96/2 катет1=48 найдем высоту р/б(или катет2) по т.пифагора: гипотенуза^2=катет1^2+катет2^2 катет2=корень из(гипотенуза^2-катет1^2) катет2=корень из(50^2-48^2) катет2=14 площадь=высота*основание/2 площадь=14*96/2 площадь=672
У правильного треугольника все стороны равны Длина вписанной окружности в правильный треугольник R = 2 * π * r1, где r1 - радиус вписанной окружности r1 = R / 2π = 9 / 2π (м)
радиус вписанной окружности в правильный треугольник r1 = a / 2√3 , где а - сторона треугольника a / 2√3 = 9 / 2π a= 9√3 / π (м)
Радиус r2 окружности, описанной около правильного треугольника:
r2 = a / √3 r2 = 9√3 / (π*√3) = 9/π (м)
Площадь окружности, описанной около правильного треугольника: S = π* (r2)² S = π * (9/π)² = π* (81/π²) = 81 / π ≈ 25,8 м²