Собственно такие простые задачи решаются следующим образом (даже чертеж не рисую, хотя сторонник всегда рисовать)- MN- средняя линия, значит, высота и основание треугольника CNM - в 2 раза меньше основания и высоты треугольника АВС. Значит, его площадь в 2*2=4 раза меньше большого. тогда площадь трапеции = площадь АВС - площадь CNM т.е. S(ABMN)=S(ABC)-S(CNM)=4*S(CNM)-S(CNM)=3*S(CNM) =3*97=291
Высота, проведенная к основанию равнобедренного треугольника, является так же и медианой. Зная это по теореме Пифагора найдем боковое ребро данного треугольника: АС= √(АD^2+(AB/2)^2)= √(3^2+4^2)= √(9+16)= √25=5 см
Радиус окружности описанной около равнобедренного треугольника: R=a^2/√((2a)^2-b^2)) (где a – боковое ребро b – основание треугольника) R=5^2/ √((2*5)^2-8^2)=25/ √(100-64)=25/ √36=25/6=4 1/6 см
Радиус окружности вписанной в равнобедренный треугольник: r=(b/2)* √((2a-b)/(2a+b)) r=(8/2)* √((2*5-8)/(2*5+8))=4 √(2/18)=4/3=1 1/3 см
Пусть при пересечении прямых a и b секущей АВ накрест лежащие углы равны: угол 1=2. Докажем, что а параллельна b. Если углы 1 и 2 прямые, то прямые a и b перпендикулярны к прямой АВ и, следовательно, параллельны.
Рассмотрим случай, еогда углы 1 и 2 не прямые.
Из середины О отрещка АВ проведем перпендикуляр ОН к прямой а. На прямой b от точки В отложим отрезок ВН1, равный отрещку АН, и проведем отрезок ОН1. Треугольники ОНА и ОН1В равны по двум сторонам и углу между ними (АО=ВО, АН=ВН1, 1=2), поэтому угол 3=4 и угол 5=6. Из равенства 3=4 следует, что точка Н1 лежит на продолжении луча ОН, т.е. точки Н, О и Н1 лежат на одной прямой, а из равенства 5=6 следует, что угол 6 - прямой (т.к. угол 5 - прямой). Итак, прямые а и b перпендикулярны к прямой НН1, поэтому они параллельны.
MN- средняя линия, значит, высота и основание треугольника CNM - в 2 раза меньше основания и высоты треугольника АВС.
Значит, его площадь в 2*2=4 раза меньше большого. тогда площадь трапеции = площадь АВС - площадь CNM
т.е.
S(ABMN)=S(ABC)-S(CNM)=4*S(CNM)-S(CNM)=3*S(CNM) =3*97=291