Интересные факты о треугольниках Треугольник – это такой простой многоугольник, состоящий из трех сторон и имеющий столько же углов. Его плоскости ограничиваются 3 точками и 3 отрезками, попарно соединяющими даные точки. Такая фигура, как треугольник, была известна еще в Древние времена. Об этой фигуре и ее свойствах упоминалось на египетских папирусах четырех тысячелетней давности. Немного позже, благодаря теореме Пифагора и формуле Герона, изучение свойства треугольника, перешло на более высокий уровень, но все же, это происходило более двух тысяч лет назад. * Китайцы гордятся китайским треугольником и считают, что он есть первоначалом всех фигур, и все остальные фигуры — лишь его частные случаи. Благодаря знаниям свойств треугольников возникла и такая наука, как тригонометрия. Она оказалась необходимой для человека в его практических потребностях, так как ее применение просто необходимо при составлении карт, измерении участков, да и при конструировании различных механизмов. А какой самый известный треугольник вы знаете? Это конечно же Бермудский треугольник! Он получил такое название в 50-х годах из-за географического расположения точек (вершин треугольника), внутри которых, согласно существующей теории, возникали связанные с ним аномалии. Вершинами Бермудского треугольника выступают Бермудские острова, Флорида и Пуэрто-Рико. А известно ли вам, что в теории Лобачевского при сложении углов треугольника их сумма всегда имеет результат меньший, чем 180º. В геометрии Римана, сумма всех углов треугольника больше 180º, а в трудах Эвклида она равна 180 градусам. Первая буква большого числа алфавитов. Имеет финикийское происхождение и, чаще всего изображается в виде перевернутого треугольника. Числовое значение — единица. Треугольник Рёло — это геометрическая фигура, образованная пересечением трёх равных кругов радиуса a с центрами в вершинах равностороннего треугольника со стороной a. Сверло, сделанное на основе треугольника Рёло, позволяет сверлить квадратные отверстия (с неточностью в 2%).
(без рисунка) Пусть АВСД - данная трапеция с бОльшим основанием АД и меньшим - ВС. МН - средняя линия. Точку пересечения диагонали АС и средней линии МН обозначим как О. Положим ВС - х см, тогда АД - (х+6) см. Поскольку длина средней линии трапеции равна полусумме оснований, имеем уравнение: х+х+6=2*7 2х=8 х=4, следовательно, ВС=4см, а АД=4+6=10см. Рассмотрим треугольник ВАС. МО (по теореме Фалеса) является его средней линией и МО=ВС/2=4/2=2см. Исходя из того, что МН=МО+ОН, находим ОН=7-2=5см. ответ: 2 см и 5 см.
Пусть MN - средняя линия трапеции (M∈AB, N∈CD). AC пересекает MN в точке О. По определению MN = (AD+BC) / 2, отсюда AD + BC = 14. Из условия AD - DC = 6. Составляем и решаем систему: AD + BC = 14, AD - DC = 6 Сложим левые и правые части, получим 2*AD = 20, AD = 10, отсюда BC = 10-6 = 4. MO и ON - отрезки, на которые AC делит ср. линию MN. MO параллельно BC, AM = MB (это по условию), значит по т. Фалеса AO = OC, т.е. MO - это средняя линия треугольника ABC, отсюда MO = BC / 2 = 4/2 =2. ON = MN - MO = 7 - 2 = 5. ответ: 2 см и 5 см
Источник: http://ktoikak.com/interesnyie-faktyi-o-treugolnikah/ Энциклопедия полезных знаний © ktoikak.com