ответ: D нүктесінен АС ға дейінгі қашықтық
17см
DE=17см
Объяснение:
АВ=ВС=10см
АС=12см
ВD=15см
Т.к DE -?
ABC теңбүйірлі АВ=ВС бүйірқабырғалары
АС табаны
D нүктесі АВС жазықтығына перпендикуляр және тура В төбесінің үстінде. Яғни ВD мен АВС жазықтығы арасындағы бұрыш 90°.
D мен АС арасындағы қашықтықты табу үшін. D нүктесінен АС ға перпендикуляр жүргізіледі. Сонда тікбұрышты Δ DBE пайда болады. < DBE=90° .
BE ΔABC ның биіктігі, медианасы және <АВС биссектрисасы . ВЕ АС ға перпендикуляр <ВЕА=<ВЕС=90°.
ВЕ АВС теңбүйірлі үшбұрышын екі тікбұрышты үшбұрышқа бөледі. ΔAEB және ΔCEB .
ΔAEB қарастырайық АВ гипотенуза , АЕ және ВЕ катеттер. АЕ=АС/2=12/2=6см
Пифагордың теоремасы бойынша
ВЕ²=АВ²-АЕ²=10²-6²=100-36=64
ВЕ=√64=8 см
ВЕ DE нің Δ АВС үшбұрышына түсірілген проекциясы . Үшбұрыш Δ DBE тікбұрышты. Мұнда BD мен BE катеттер , ал DE гипотенуза болады.
Тағы да Пифагордың теоремасы бойынша
DE²=BD²+BE²=15²+8²=225+64=289
DE=√289=17см
Дано:
трап. ABCD
AB, CD - основания
AB=2 см
CD=10 см
AD=8 см
угол D=30⁰
Найти:
S(abcd)-?
S=1/2(a+b)*h
Проведем высоту AM.
Рассмотрим тр. DAM - прямоугольный
по условию угол D=90⁰ ⇒ угол DAM 60⁰
в треугольнике с углами в 30,60,90 градусов, катет лежащий против угла в 30 равен половине гипотенузы ⇒ AM=1/2*AD=4 см
S(abcd)=1/2*(2+10)*4=24 см²