Т.к. один из острых углов прямоугольного треугольника равен 45°, то и второй острый угол этого треугольника тоже равен 45°, а сам треугольник является равнобедренным ( гипотенуза является основанием равнобедренного треугольника, а катеты являются бедрами этого равнобедренного треугольника и соответственно равны друг другу )
Пусть а и b - катеты треугольника, а с - его гипотенуза. Так как в нашем случае катеты равны, то по теореме Пифагора с² = 2а²
Площадь же данного треугольника можно найти по формуле S = a*b/2
Так как в данном треугольнике катеты равны друг другу, то формула площади треугольника примет вид S = a²/2 = c²/4
Подставим численное значение длины гипотенузы в полученную формулу и найдём площадь треугольника:
S = c²/4 = 20²/4 = 400/4 = 100
Площадь данного прямоугольного треугольника равна 100.
Дано: Угол N=120°,NP перпенд.MNK, MP=4кв.кор.из 5, PK=10 см, NP=8 см.
Найти: MK.
Решение: треугольник MNP прямоугольный, MP в кв=PN в кв+MN в кв
MN=кор. кв из MPв кв - PN в кв=кор.кв.из 16×5-64=4.
Треугольник PNK прямоугольный, PK в кв=PN в кв+NK в кв
NK=кор. кв из PKв кв - PN в кв=кор.кв.из 100-64=6.
Треугольник MNK по теореме косинусов
MK в кв=MN в кв+NK в кв - 2×MN×NK×cosN = 16+36-2×4×6×cos 120°=52+2×24×(-0,5)=
52+24=76
MK=кор. кв из76=кор. кв из 4×19= 2 кор. кв из19
ответ:MK= 2 кор. кв из19