Задача 1. - в объяснениях.
Задача 2. Pabcd = 64 см.
Задача 3. АВ = 14см.
Объяснение:
Задача 1.
АЕ=CF (дано), АВ = CD (противоположные стороны параллелограмма),
∠ВАЕ = ∠CDF (как накрест лежащие при параллельных АВ и CD и секущей АС).
Значит треугольники АВЕ и CDF равны по двум сторонам и углу между ними. =>
BE = DF (соответственные стороны в равных треугольниках). Что и требовалось доказать.
Задача 2.
Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник (свойство). => 3х = 12см. х = 4см 2х = 8см. AD = 5х =20см. Pabcd = 2*(AB+CD) = 64см.
Задача 3.
ОМ и ON - средние линии треугольника (они проходят через середину О стороны АВ и параллельны противоположным сторонам треугольника). Значит точки М и N делят стороны АС и ВС пополам и отрезок MN - тоже средняя линия треугольника. Она равна половине стороны АВ.
АВ = 2*7 = 14см.
Если боковые стороны равны, трапеция называется равнобедренной. Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной. Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции. Свойства трапеции 1. Средняя линия трапеции параллельна основаниям и равна их полусумме. 2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне. 3. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия – Отношение площадей этих треугольников есть . 4. Треугольники и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь. 5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон. 6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии. 7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой. 8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности. Свойства и признаки равнобедренной трапеции 1. В равнобедренной трапеции углы при любом основании равны. 2. В равнобедренной трапеции длины диагоналей равны. 3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная. 4. Около равнобедренной трапеции можно описать окружность. 5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований. Вписанная окружность Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и , то Площадь или где – средняя линия