відповідь:
пояснення:
проекция вершины s на основание , есть точка пересечения диагоналей квадрата abcd .
положим что это точка h .
l,k середины as, cs соответсвенно , также положим что b1k пересекает bc в точке x , можно теореме менелая , тогда
bb1/b1s * sk/kc * cx/bx=1
или (20-5)/5*(1/1)* (cx/(24+cx))=1 , откуда cx=12 , значит bx=36. аналогично если y точка пересечения lb1 с ab , тогда by=36 .
опустим высоту из точки b1 на основание , основание высоты n будет лежат на диагонали . найдём b1n , подобия треугольников shb и b1nb , тогда sh/b1n = 4/3
по теореме пифагора sh=sqrt(bs^2 - bh^2) = sqrt(bs^2-(bd/2)^2) = sqrt(20^2-(12 sqrt()= sqrt(112) , значит b1n = 3*sqrt(7) и bn=sqrt(15^2-9*7)=9*sqrt(2) . xby равнобедренный и прямоугольный треугольник , положим что m точка пересечения bn и xy , тогда bm=36*sqrt(2) , и mn=bm-bn= 36*sqrt(2)-9*sqrt(2) = 27*sqrt(2) .
тогда если "a" это угол между плослкостью основания и данной плосокостью то
tga=b1n/mn = 3*sqrt(7) / 27*sqrt(2) = sqrt(14)/18 , откуда
a=arctg(sqrt(14)/18) .
1.
Если каждую сторону треугольника увеличить в 2 раза его площадь измениться в 4 раза.
Если каждую сторону треугольника увеличить в 3 раза его площадь измениться в 9 раз.
2.
1) а - первоначальная длина ребра
3а - увеличенная длина ребра (первоначальная длина ребра, увеличенная в 3 раза)
V_{1}=a^{3}V
1
=a
3
V_{2}=(3a)^{3}=27a^{3}V
2
=(3a)
3
=27a
3
V=V_{2}:V_{1}=\frac{27a^{3}}{a^{3}}=27V=V
2
:V
1
=
a
3
27a
3
=27 (раз) - разница.
ответ: в 27 раз увеличится объём куба, если его ребра увеличить в три раза.
2)
Площадь основания увеличиться в 9 раз, а высота в 3, получается тоже в 27 раз.