В трапеции ABCD биссектриса угла BAD проходит через точку М, которая является серединой CD. Известно, что АВ=5, АМ=4. Найдите длину отрезка ВМ.
По условию СМ=CD.
Решить задачу можно разными
Проведем МК || AD - по т. Фалеса она делит АВ в отношении DM:MC т.е. на АК=КВ.
В ∆ АКМ ∠КМА= ∠МАD - как накрестлежащие.
∠МАD=∠МАК- как половины ∠КАD
∠КАМ=∠КМА⇒
∆ АКМ - равнобедренный, и АК=КМ.
Но КМ=АК=КВ ⇒ ∆ ВКМ равнобедренный, ⇒ ∠КВМ=∠КМВ.
Углу КМВ равен накрестлежащий ∠ СВМ. ⇒ ВМ - биссектриса угла СВК.
В трапеции сумма углов, прилежащих к одной боковой стороне, равна 180º
Тогда сумма их половин равна 90º, и угол ВМА=180º-90º=90º
∆ АВМ - прямоугольный. Отношение катета АМ к гипотенузе АВ 3:5⇒ ∆ АВМ - египетский, и ВМ=3 (ед. длины) ( по т.Пифагора получим ту же величину).
Доказав, что ∆ АКМ - равнобедренный, проведем в нем высоту КН. Она же - медиана, и АН=НМ.
Тогда КН - средняя линия ∆ АВМ, и КН || ВМ, откуда следует, что угол ВМА=90º, ∆ АВМ - египетский и ВМ=3 (ед. длины).
на любителей т. косинусов)
По т. косинусов можно из ∆ КАМ найти косинус угла КАМ, затем по ней той же теореме длину ВМ.
Вычисления приводить не буду - пользовалась при нахождении косинуса инженерным калькулятором. Без него значения будут лишь приближенными. Таким образом найден
cos ∠КАМ=0,8.
Тогда ВМ²=5²+4²-2•5•4•0,8 ⇒
BM²=25+16-32=9
BM=3 (ед. длины)
ответ:
манилов-> коробочка-> ноздрев-> собакевич-> плюшкин
он ездил именно в такой последовательности, потому что возвышались пороки человеческие.
если манилов это пустой мечтатель, бездеятель, лентяй, то плюшкин это высшая степень пороков человека.
но, хотя все помещики считаются мертвыми душами, не развивиющимися, плюшкин считается самым живым из них, потому что него есть цель в жизни (еще больше разбогатеть) и у него хоть как-то проявляются чувства (он переживает из за одиночества; играет с внуками)
PT=KM, PK = TM, KT - общая, то треугольник KPT = треугольнику KMT
Угол PTK = Углу MKT, то PT||KM потому что при параллельных прямых накрест лежащие углы равны.
3.
Угол 1 = 90 градусов, так как внутри лежащие углы равны.
Чертеж на 2-ое задание