М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Blackbberyy
Blackbberyy
28.11.2022 01:00 •  Геометрия

Дано рівняння сторін трикутника: x+y+2=0, x-5y+2=0. 5x-y-14=0. обчисліть периметр трикутника. (9 клас).

👇
Ответ:
Находим вершины треугольника как точки пересечения прямых
x+y+2=0,
x-5y+2=0,
5x-y-14=0.

x+y+2=0,           x+y+2 = 0
x-5y+2=0|x(-1)  -x+5y-2 = 0
                       
                             6y =  0,   y = 0 
y = -2-x = -2-0 = -2.   Пусть это точка А(-2; 0).

x+y+2=0,
5x-y-14=0.   

6х   -12 = 0
  х = 12/6 = 2,
  у = -2-х = -2-2 = -4.  Обозначим точку В(2; -4).


x-5y+2=0.                  x-5y+2 = 0
5x-y-14=0|x(-5)     -25x+5y+70 = 0. 
                           
                              -24x + 72 = 0
                                   x = 72/24 = 3.
 y = 5x -14 = 5*3-14 = 15-14 =1   это точка С(3; 1).

 Расчет длин сторон
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √32 ≈ 5,656854249, 
BC = √((Хc-Хв)²+(Ус-Ув)²) = √26 ≈ 5,099019514,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √26 ≈ 5,099019514.
Периметр Р = 15,85489.                       
4,8(88 оценок)
Открыть все ответы
Ответ:
Mushvi
Mushvi
28.11.2022

дано: δ авс

∠с = 90°

ак - биссектр.

ак = 18 см

км = 9 см

найти:   ∠акв

решение.

      т.к. расстояние от точки  измеряется по перпендикуляру, то опустим его из (·) к  на гипотенузу ав и обозначим это расстояние км.

      рассмотрим полученный δ акм, т.к.  ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из  условия, катет км = 9/18 = 1/2 ак, то  ∠кам = 30°. 

      т.к. по условию ак - биссектриса, то  ∠сак =∠кам = 30°

      рассмотрим  δакс. по условию  ∠аск = 90°; а∠сак = 30°, значит,  ∠акс = 180° - 90° - 30° = 60°

      искомый  ∠акв - смежный с  ∠акс, значит,  ∠акв = 180° - ∠акс = 180° - 60° = 120° 

ответ: 120°

4,5(93 оценок)
Ответ:
Ksenon102
Ksenon102
28.11.2022

1. Найти угол между векторами AС и АB.

\overrightarrow{AC}=(1-1;\;2-3;\;1-0)=(0;\;-1;\;1)\\ \\ \overrightarrow{AB}=(2-1;\;3-3;\;1-0)=(1;\;0;\;1)

|\overrightarrow{AC}|=\sqrt{0^2+(-1)^2+1^2} =\sqrt{2} \\ \\|\overrightarrow{AB}|=\sqrt{1^2+0^2+1^2} =\sqrt{2}

cos\angle CAB=\frac{\overrightarrow{AC}\cdot\overrightarrow{AB}}{|\overrightarrow{AC}|\cdot|\overrightarrow{AB}|}=\frac{0\cdot1+(-1)\cdot0+1\cdot1}{\sqrt{2}\cdot \sqrt{2} } =\frac{1}{2} \quad \Rightarrow\quad \angle CAB=arccos\frac{1}{2}=60^{\circ}

*Можно искать не косинус угла, а найти длину вектора BC, тогда ΔABC -- равносторонний и углы равны по 60°.

2. Найти координаты центра сферы и длину ее радиуса. Найти значение m.

Приведём уравнение к общему виду (x - x₀)² + (y - y₀)² + (z - z₀)² = R²:

x^2+y^2+z^2-2y+4z=11\\ \\ x^2+(y^2-2y+1)+(z^2+4z+4)-1-4=11\\ \\ x^2+(y-1)^2+(z+2)^2=16

Тогда O (x₀; y₀; z₀) -- центр сферы, O (0; 1; -2),

R² = 16  ⇒  R = 4

Если точка принадлежит сфере, то подставив её координаты в уравнение, получится верное равенство. Подставим точки A и B в уравнение сферы:

\left \{ {{m^2+(1-1)^2+(-2+2)^2=16,} \atop {(\sqrt{3} )^2+(m-6-1)^2+(2+2)^2=16}} \right. \\ \\ -\left \{ {{m^2=16,} \atop {m^2-14m+60=16}} \right. \\ \\ m^2- (m^2-14m-60)=16-16\\ \\ 14m+60=0\\ \\ m=-\frac{30}{7}

3. Найти уравнение плоскости α.

Ax + By + Cy + D = 0 -- общее уравнение плоскости.

n = (A; B; C) -- вектор нормали  ⇒ A = 1, B = 2, C = 3, тогда

\alpha:\;\; x + 2y+ 3z + D = 0

Если точка принадлежит плоскости, то подставив её координаты в уравнение, получится верное равенство:

3 + 2\cdot(-2)+ 3\cdot 4 + D = 0\\ \\ 11 =-D\\ \\ D=-11\\ \\ \alpha :\;\;x+2y+3z-11=0

4. Найти общее уравнение прямой.

Общее уравнение прямой представляет собой систему уравнений двух пересекающихся плоскостей. Решение этой системы есть пересечение плоскостей, то есть прямая.

Зададим прямую параметрически:

\left\{\begin{matrix}x=x_2+(x_2-x_1)\lambda,\\ y=y_2+(y_2-y_1)\lambda,\\ z=z_2+(z_2-z_1)\lambda;\end{matrix}\right\\\\\\ \left\{\begin{matrix}x=2+(2-1)\lambda,\\ y=0+(0-(-2))\lambda,\\ z=4+(4-3)\lambda;\end{matrix}\right\\\\\\ \left\{\begin{matrix}x=2+\lambda,\\ y=2\lambda,\\ z=4\lambda;\end{matrix}\right

Исключим параметр λ:

\left\{\begin{matrix}\lambda=x-2,\\ y=2(x-2),\\ z=4+(x-2);\end{matrix}\right\\\\ \\ \left\{\begin{matrix}y=2x-4,\\ z=x+2;\end{matrix}\right\\ \\\\\ \left\{\begin{matrix}y-2x+4=0,\\ z-x-2=0;\end{matrix}\right

Последняя система -- это общее уравнение прямой.

4,6(70 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ