Пусть в ромбе АВСD сторона АD = 8,6 см, а угол ∠ВАD = 30°.
Опустим высоту ВН к основанию АD и рассмотрим получившийся при этом прямоугольный треугольник ΔАВН (∠ВНА = 90°). В нём катет ВН равен половине гипотенузы АВ по свойству катета, лежащего напротив угла ∠ВАD = 30°; а сторона АВ = АD = 8,6 см – по свойству сторон ромба. Получаем: ВН = 8,6 см : 2; ВН = 4,3 см.
Чтобы найти площадь ромба, найдём произведение длины основания ромба на длину его высоты, то есть S = АD · ВН или S = 8,6 см · 4,3 см; S = 36,98 см².
ответ: площадь ромба составляет 36,98 см².
Объяснение:
хмм.. не знаю, должно, наверно, правильно.
а где продолжение условия? основанием пирамиды dabc является правильный треугольник abc сторона которого = ребро da перпендикулярно к плоскости авс , а плоскость dbc составляет с плоскостью авс угол 30*. найдите площадь боковой поверхности пирамиды. условие такое? если такое, то вот решение : s(бок) = 2s(адс) + s(всд) угол дка = 30, тогда ад = ак* tg30 = (av3/2)*v3/3 =a/2 тогда s(асд) = 1/2*а*а/2 = а^2 / 4 дк = а, тогда s(всд) = 1/2*а*а = а^2 / 2 s(бок) = 2*(а^2 / 4) * (а^2 / 2) = а^2
Свойства касательной Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания. Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.